Joint Answering and Explanation for Visual Commonsense Reasoning

Visual Commonsense Reasoning (VCR), deemed as one challenging extension of Visual Question Answering (VQA), endeavors to pursue a higher-level visual comprehension. VCR includes two complementary processes: question answering over a given image and rationale inference for answering explanation. Over...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 06., Seite 3836-3846
1. Verfasser: Li, Zhenyang (VerfasserIn)
Weitere Verfasser: Guo, Yangyang, Wang, Kejie, Wei, Yinwei, Nie, Liqiang, Kankanhalli, Mohan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM359117864
003 DE-627
005 20231226080212.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3286259  |2 doi 
028 5 2 |a pubmed24n1197.xml 
035 |a (DE-627)NLM359117864 
035 |a (NLM)37410654 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Zhenyang  |e verfasserin  |4 aut 
245 1 0 |a Joint Answering and Explanation for Visual Commonsense Reasoning 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 13.07.2023 
500 |a Date Revised 18.07.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Visual Commonsense Reasoning (VCR), deemed as one challenging extension of Visual Question Answering (VQA), endeavors to pursue a higher-level visual comprehension. VCR includes two complementary processes: question answering over a given image and rationale inference for answering explanation. Over the years, a variety of VCR methods have pushed more advancements on the benchmark dataset. Despite significance of these methods, they often treat the two processes in a separate manner and hence decompose VCR into two irrelevant VQA instances. As a result, the pivotal connection between question answering and rationale inference is broken, rendering existing efforts less faithful to visual reasoning. To empirically study this issue, we perform some in-depth empirical explorations in terms of both language shortcuts and generalization capability. Based on our findings, we then propose a plug-and-play knowledge distillation enhanced framework to couple the question answering and rationale inference processes. The key contribution lies in the introduction of a new branch, which serves as a relay to bridge the two processes. Given that our framework is model-agnostic, we apply it to the existing popular baselines and validate its effectiveness on the benchmark dataset. As demonstrated in the experimental results, when equipped with our method, these baselines all achieve consistent and significant performance improvements, evidently verifying the viability of processes coupling 
650 4 |a Journal Article 
700 1 |a Guo, Yangyang  |e verfasserin  |4 aut 
700 1 |a Wang, Kejie  |e verfasserin  |4 aut 
700 1 |a Wei, Yinwei  |e verfasserin  |4 aut 
700 1 |a Nie, Liqiang  |e verfasserin  |4 aut 
700 1 |a Kankanhalli, Mohan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 06., Seite 3836-3846  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:32  |g year:2023  |g day:06  |g pages:3836-3846 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3286259  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 06  |h 3836-3846