Conditional Boundary Loss for Semantic Segmentation

Improving boundary segmentation results has recently attracted increasing attention in the field of semantic segmentation. Since existing popular methods usually exploit the long-range context, the boundary cues are obscure in the feature space, leading to poor boundary results. In this paper, we pr...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 01., Seite 3717-3731
1. Verfasser: Wu, Dongyue (VerfasserIn)
Weitere Verfasser: Guo, Zilin, Li, Aoyan, Yu, Changqian, Gao, Changxin, Sang, Nong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Improving boundary segmentation results has recently attracted increasing attention in the field of semantic segmentation. Since existing popular methods usually exploit the long-range context, the boundary cues are obscure in the feature space, leading to poor boundary results. In this paper, we propose a novel conditional boundary loss (CBL) for semantic segmentation to improve the performance of the boundaries. The CBL creates a unique optimization goal for each boundary pixel, conditioned on its surrounding neighbors. The conditional optimization of the CBL is easy yet effective. In contrast, most previous boundary-aware methods have difficult optimization goals or may cause potential conflicts with the semantic segmentation task. Specifically, the CBL enhances the intra-class consistency and inter-class difference, by pulling each boundary pixel closer to its unique local class center and pushing it away from its different-class neighbors. Moreover, the CBL filters out noisy and incorrect information to obtain precise boundaries, since only surrounding neighbors that are correctly classified participate in the loss calculation. Our loss is a plug-and-play solution that can be used to improve the boundary segmentation performance of any semantic segmentation network. We conduct extensive experiments on ADE20K, Cityscapes, and Pascal Context, and the results show that applying the CBL to various popular segmentation networks can significantly improve the mIoU and boundary F-score performance
Beschreibung:Date Completed 11.07.2023
Date Revised 18.07.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2023.3290519