Hyperpixels : Flexible 4D Over-Segmentation for Dense and Sparse Light Fields

4D Light Field (LF) imaging, since it conveys both spatial and angular scene information, can facilitate computer vision tasks and generate immersive experiences for end-users. A key challenge in 4D LF imaging is to flexibly and adaptively represent the included spatio-angular information to facilit...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 01., Seite 3790-3805
1. Verfasser: Hamad, Maryam (VerfasserIn)
Weitere Verfasser: Conti, Caroline, Nunes, Paulo, Soares, Luis Ducla
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM359070361
003 DE-627
005 20231226080105.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3290523  |2 doi 
028 5 2 |a pubmed24n1196.xml 
035 |a (DE-627)NLM359070361 
035 |a (NLM)37405879 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hamad, Maryam  |e verfasserin  |4 aut 
245 1 0 |a Hyperpixels  |b Flexible 4D Over-Segmentation for Dense and Sparse Light Fields 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 12.07.2023 
500 |a Date Revised 18.07.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a 4D Light Field (LF) imaging, since it conveys both spatial and angular scene information, can facilitate computer vision tasks and generate immersive experiences for end-users. A key challenge in 4D LF imaging is to flexibly and adaptively represent the included spatio-angular information to facilitate subsequent computer vision applications. Recently, image over-segmentation into homogenous regions with perceptually meaningful information has been exploited to represent 4D LFs. However, existing methods assume densely sampled LFs and do not adequately deal with sparse LFs with large occlusions. Furthermore, the spatio-angular LF cues are not fully exploited in the existing methods. In this paper, the concept of hyperpixels is defined and a flexible, automatic, and adaptive representation for both dense and sparse 4D LFs is proposed. Initially, disparity maps are estimated for all views to enhance over-segmentation accuracy and consistency. Afterwards, a modified weighted K -means clustering using robust spatio-angular features is performed in 4D Euclidean space. Experimental results on several dense and sparse 4D LF datasets show competitive and outperforming performance in terms of over-segmentation accuracy, shape regularity and view consistency against state-of-the-art methods 
650 4 |a Journal Article 
700 1 |a Conti, Caroline  |e verfasserin  |4 aut 
700 1 |a Nunes, Paulo  |e verfasserin  |4 aut 
700 1 |a Soares, Luis Ducla  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 01., Seite 3790-3805  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:32  |g year:2023  |g day:01  |g pages:3790-3805 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3290523  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 01  |h 3790-3805