|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM358962099 |
003 |
DE-627 |
005 |
20240117231928.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202302871
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1262.xml
|
035 |
|
|
|a (DE-627)NLM358962099
|
035 |
|
|
|a (NLM)37394983
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Dull, Jordan T
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Thin-Film Organic Heteroepitaxy
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 17.01.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.
|
520 |
|
|
|a Incorporating crystalline organic semiconductors into electronic devices requires understanding of heteroepitaxy given the ubiquity of heterojunctions in these devices. However, while rules for commensurate epitaxy of covalent or ionic inorganic material systems are known to be dictated by lattice matching constraints, rules for heteroepitaxy of molecular systems are still being written. Here, it is found that lattice matching alone is insufficient to achieve heteroepitaxy in molecular systems, owing to weak intermolecular forces that describe molecular crystals. It is found that, in addition, the lattice matched plane also must be the lowest energy surface of the adcrystal to achieve one-to-one commensurate molecular heteroepitaxy over a large area. Ultraviolet photoelectron spectroscopy demonstrates the lattice matched interface to be of higher electronic quality than a disordered interface of the same materials
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a crystal growth
|
650 |
|
4 |
|a heteroepitaxy
|
650 |
|
4 |
|a organic materials
|
650 |
|
4 |
|a small molecules
|
700 |
1 |
|
|a He, Xu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Viereck, Jonathan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ai, Qianxiang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ramprasad, Ritika
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Otani, Maria Clara
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sorli, Jeni
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Brandt, Jason W
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Carrow, Brad P
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tinoco, Arthur D
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Loo, Yueh-Lin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Risko, Chad
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Rangan, Sylvie
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kahn, Antoine
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Rand, Barry P
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 35(2023), 35 vom: 01. Sept., Seite e2302871
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:35
|g year:2023
|g number:35
|g day:01
|g month:09
|g pages:e2302871
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202302871
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 35
|j 2023
|e 35
|b 01
|c 09
|h e2302871
|