Light-mediated anthocyanin biosynthesis in rose petals involves a balanced regulatory module comprising transcription factors RhHY5, RhMYB114a, and RhMYB3b

© The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 74(2023), 18 vom: 29. Sept., Seite 5783-5804
1. Verfasser: Yan, Yuhang (VerfasserIn)
Weitere Verfasser: Zhao, Jiaxing, Lin, Shengnan, Li, Mouliang, Liu, Jiayi, Raymond, Olivier, Vergne, Philippe, Kong, Weilong, Wu, Quanshu, Zhang, Xiaoni, Bao, Manzhu, Bendahmane, Mohammed, Fu, Xiaopeng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Anthocyanin HY5 R2R3-MYB light regulatory network rose Transcription Factors Anthocyanins Plant Proteins
Beschreibung
Zusammenfassung:© The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.
Roses are significant botanical species with both ornamental and economic value, displaying diverse floral traits, particularly an extensive array of petal colors. The red pigmentation of rose petals is predominantly attributed to anthocyanin accumulation. However, the underlying regulatory mechanism of anthocyanin biosynthesis in roses remains elusive. This study presents a novel light-responsive regulatory module governing anthocyanin biosynthesis in rose petals, which involves the transcription factors RhHY5, RhMYB114a, and RhMYB3b. Under light conditions (1000-1500 μmol m-2 s-1), RhHY5 represses RhMYB3b expression and induces RhMYB114a expression, positively regulating anthocyanin biosynthesis in rose petals. Notably, activation of anthocyanin structural genes probably involves an interaction and synergy between RhHY5 and the MYB114a-bHLH3-WD40 complex. Additionally, RhMYB3b is activated by RhMYB114a to prevent excessive accumulation of anthocyanin. Conversely, under low light conditions (<10 μmol m-2 s-1), the degradation of RhHY5 leads to down-regulation of RhMYB114a and up-regulation of RhMYB3b, which in turn inhibits the expression of both RhMYB114a and anthocyanin structural genes. Additionally, RhMYB3b competes with RhMYB114a for binding to RhbHLH3 and the promoters of anthocyanin-related structural genes. Overall, our study uncovers a complex light-mediated regulatory network that governs anthocyanin biosynthesis in rose petals, providing new insights into the molecular mechanisms underlying petal color formation in rose
Beschreibung:Date Completed 02.10.2023
Date Revised 02.10.2023
published: Print
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/erad253