GhSINA1, a SEVEN in ABSENTIA ubiquitin ligase, negatively regulates fiber development in Upland cotton

Copyright © 2023 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 201(2023) vom: 15. Aug., Seite 107853
1. Verfasser: Yang, Xiao-Qing (VerfasserIn)
Weitere Verfasser: Li, Wei, Ren, Zhong-Ying, Zhao, Jun-Jie, Li, Xin-Yang, Wang, Xing-Xing, Pei, Xiao-Yu, Liu, Yan-Gai, He, Kun-Lun, Zhang, Fei, Ma, Xiong-Feng, Yang, Dai-Gang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Cotton Fiber SINA Ubiquitin ligase Ubiquitination Ubiquitin Ligases EC 6.- Plant Proteins
Beschreibung
Zusammenfassung:Copyright © 2023 Elsevier Masson SAS. All rights reserved.
Protein ubiquitination is essential for plant growth and responses to the environment. The SEVEN IN ABSENTIA (SINA) ubiquitin ligases have been extensively studied in plants, but information on their roles in fiber development is limited. Here, we identified GhSINA1 in Upland cotton (Gossypium hirsutum), which has a conserved RING finger domain and SINA domain. Quantitative real-time PCR (qRT-PCR) analysis showed that GhSINA1 was preferentially expressed during fiber initiation and elongation, especially during initiation in the fuzzless-lintless cotton mutant. Subcellular localization experiments indicated that GhSINA1 localized to the nucleus. In vitro ubiquitination analysis revealed that GhSINA1 has E3 ubiquitin ligase activity. Ectopic overexpression of GhSINA1 in Arabidopsis thaliana reduced the number and length of root hairs and trichomes. Yeast two-hybrid (Y2H), firefly luciferase complementation imaging (LCI), and bimolecular fluorescence complementation (BiFC) assays demonstrated that the GhSINA1 proteins could interact with each other to form homodimers and heterodimers. Overall, these results suggest that GhSINA1 may act as a negative regulator in cotton fiber development through homodimerization and heterodimerization
Beschreibung:Date Completed 14.08.2023
Date Revised 14.08.2023
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690
DOI:10.1016/j.plaphy.2023.107853