Geometric Back-Propagation in Morphological Neural Networks

This paper provides a definition of back-propagation through geometric correspondences for morphological neural networks. In addition, dilation layers are shown to learn probe geometry by erosion of layer inputs and outputs. A proof-of-principle is provided, in which predictions and convergence of m...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 11 vom: 12. Nov., Seite 14045-14051
Auteur principal: Groenendijk, Rick (Auteur)
Autres auteurs: Dorst, Leo, Gevers, Theo
Format: Article en ligne
Langue:English
Publié: 2023
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article