Geometric Back-Propagation in Morphological Neural Networks

This paper provides a definition of back-propagation through geometric correspondences for morphological neural networks. In addition, dilation layers are shown to learn probe geometry by erosion of layer inputs and outputs. A proof-of-principle is provided, in which predictions and convergence of m...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 11 vom: 12. Nov., Seite 14045-14051
1. Verfasser: Groenendijk, Rick (VerfasserIn)
Weitere Verfasser: Dorst, Leo, Gevers, Theo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM35885749X
003 DE-627
005 20250304233741.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3290615  |2 doi 
028 5 2 |a pubmed25n1195.xml 
035 |a (DE-627)NLM35885749X 
035 |a (NLM)37384467 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Groenendijk, Rick  |e verfasserin  |4 aut 
245 1 0 |a Geometric Back-Propagation in Morphological Neural Networks 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 03.10.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper provides a definition of back-propagation through geometric correspondences for morphological neural networks. In addition, dilation layers are shown to learn probe geometry by erosion of layer inputs and outputs. A proof-of-principle is provided, in which predictions and convergence of morphological networks significantly outperform convolutional networks 
650 4 |a Journal Article 
700 1 |a Dorst, Leo  |e verfasserin  |4 aut 
700 1 |a Gevers, Theo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 11 vom: 12. Nov., Seite 14045-14051  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:45  |g year:2023  |g number:11  |g day:12  |g month:11  |g pages:14045-14051 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3290615  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 11  |b 12  |c 11  |h 14045-14051