GPA-Net:No-Reference Point Cloud Quality Assessment With Multi-Task Graph Convolutional Network

With the rapid development of 3D vision, point cloud has become an increasingly popular 3D visual media content. Due to the irregular structure, point cloud has posed novel challenges to the related research, such as compression, transmission, rendering and quality assessment. In these latest resear...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 30(2024), 8 vom: 01. Juli, Seite 4955-4967
1. Verfasser: Shan, Ziyu (VerfasserIn)
Weitere Verfasser: Yang, Qi, Ye, Rui, Zhang, Yujie, Xu, Yiling, Xu, Xiaozhong, Liu, Shan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM358804825
003 DE-627
005 20240703232327.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2023.3282802  |2 doi 
028 5 2 |a pubmed24n1458.xml 
035 |a (DE-627)NLM358804825 
035 |a (NLM)37379183 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shan, Ziyu  |e verfasserin  |4 aut 
245 1 0 |a GPA-Net:No-Reference Point Cloud Quality Assessment With Multi-Task Graph Convolutional Network 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 01.07.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a With the rapid development of 3D vision, point cloud has become an increasingly popular 3D visual media content. Due to the irregular structure, point cloud has posed novel challenges to the related research, such as compression, transmission, rendering and quality assessment. In these latest researches, point cloud quality assessment (PCQA) has attracted wide attention due to its significant role in guiding practical applications, especially in many cases where the reference point cloud is unavailable. However, current no-reference metrics which based on prevalent deep neural network have apparent disadvantages. For example, to adapt to the irregular structure of point cloud, they require preprocessing such as voxelization and projection that introduce extra distortions, and the applied grid-kernel networks, such as Convolutional Neural Networks, fail to extract effective distortion-related features. Besides, they rarely consider the various distortion patterns and the philosophy that PCQA should exhibit shift, scaling, and rotation invariance. In this paper, we propose a novel no-reference PCQA metric named the Graph convolutional PCQA network (GPA-Net). To extract effective features for PCQA, we propose a new graph convolution kernel, i.e., GPAConv, which attentively captures the perturbation of structure and texture. Then, we propose the multi-task framework consisting of one main task (quality regression) and two auxiliary tasks (distortion type and degree predictions). Finally, we propose a coordinate normalization module to stabilize the results of GPAConv under shift, scale and rotation transformations. Experimental results on two independent databases show that GPA-Net achieves the best performance compared to the state-of-the-art no-reference PCQA metrics, even better than some full-reference metrics in some cases 
650 4 |a Journal Article 
700 1 |a Yang, Qi  |e verfasserin  |4 aut 
700 1 |a Ye, Rui  |e verfasserin  |4 aut 
700 1 |a Zhang, Yujie  |e verfasserin  |4 aut 
700 1 |a Xu, Yiling  |e verfasserin  |4 aut 
700 1 |a Xu, Xiaozhong  |e verfasserin  |4 aut 
700 1 |a Liu, Shan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 30(2024), 8 vom: 01. Juli, Seite 4955-4967  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:30  |g year:2024  |g number:8  |g day:01  |g month:07  |g pages:4955-4967 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2023.3282802  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2024  |e 8  |b 01  |c 07  |h 4955-4967