|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM358795702 |
003 |
DE-627 |
005 |
20231226075511.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1080/02664763.2022.2054962
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1195.xml
|
035 |
|
|
|a (DE-627)NLM358795702
|
035 |
|
|
|a (NLM)37378265
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Bak, Kwan-Young
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Intrinsic spherical smoothing method based on generalized Bézier curves and sparsity inducing penalization
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 01.07.2023
|
500 |
|
|
|a published: Electronic-eCollection
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2022 Informa UK Limited, trading as Taylor & Francis Group.
|
520 |
|
|
|a This study examines an intrinsic penalized smoothing method on the 2-sphere. We propose a method based on the spherical Bézier curves obtained using a generalized de Casteljau algorithm to provide a degree-based regularity constraint to the spherical smoothing problem. A smooth Bézier curve is found by minimizing the least squares criterion under the regularization constraint. The de Casteljau algorithm constructs higher-order Bézier curves in a recursive manner using linear Bézier curves. We introduce a local penalization scheme based on a penalty function that regularizes the velocity differences in consecutive linear Bézier curves. The imposed penalty induces sparsity on the control points so that the proposed method determines the number of control points, or equivalently the order of the Bézier curve, in a data-adaptive way. An efficient Riemannian block coordinate descent algorithm is devised to implement the proposed method. Numerical studies based on real and simulated data are provided to illustrate the performance and properties of the proposed method. The results show that the penalized Bézier curve adapts well to local data trends without compromising overall smoothness
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a 53Z99
|
650 |
|
4 |
|a 62P12
|
650 |
|
4 |
|a 90C90
|
650 |
|
4 |
|a Curve fitting
|
650 |
|
4 |
|a Riemannian coordinate descent
|
650 |
|
4 |
|a de casteljau algorithm
|
650 |
|
4 |
|a generalized Bézier curve
|
650 |
|
4 |
|a sparsity
|
650 |
|
4 |
|a spherical data
|
700 |
1 |
|
|a Shin, Jae-Kyung
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Koo, Ja-Yong
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of applied statistics
|d 1991
|g 50(2023), 9 vom: 15., Seite 1942-1961
|w (DE-627)NLM098188178
|x 0266-4763
|7 nnns
|
773 |
1 |
8 |
|g volume:50
|g year:2023
|g number:9
|g day:15
|g pages:1942-1961
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1080/02664763.2022.2054962
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 50
|j 2023
|e 9
|b 15
|h 1942-1961
|