Intrinsic spherical smoothing method based on generalized Bézier curves and sparsity inducing penalization

© 2022 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 50(2023), 9 vom: 15., Seite 1942-1961
1. Verfasser: Bak, Kwan-Young (VerfasserIn)
Weitere Verfasser: Shin, Jae-Kyung, Koo, Ja-Yong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article 53Z99 62P12 90C90 Curve fitting Riemannian coordinate descent de casteljau algorithm generalized Bézier curve sparsity spherical data
LEADER 01000naa a22002652 4500
001 NLM358795702
003 DE-627
005 20231226075511.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2022.2054962  |2 doi 
028 5 2 |a pubmed24n1195.xml 
035 |a (DE-627)NLM358795702 
035 |a (NLM)37378265 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bak, Kwan-Young  |e verfasserin  |4 aut 
245 1 0 |a Intrinsic spherical smoothing method based on generalized Bézier curves and sparsity inducing penalization 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 01.07.2023 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a This study examines an intrinsic penalized smoothing method on the 2-sphere. We propose a method based on the spherical Bézier curves obtained using a generalized de Casteljau algorithm to provide a degree-based regularity constraint to the spherical smoothing problem. A smooth Bézier curve is found by minimizing the least squares criterion under the regularization constraint. The de Casteljau algorithm constructs higher-order Bézier curves in a recursive manner using linear Bézier curves. We introduce a local penalization scheme based on a penalty function that regularizes the velocity differences in consecutive linear Bézier curves. The imposed penalty induces sparsity on the control points so that the proposed method determines the number of control points, or equivalently the order of the Bézier curve, in a data-adaptive way. An efficient Riemannian block coordinate descent algorithm is devised to implement the proposed method. Numerical studies based on real and simulated data are provided to illustrate the performance and properties of the proposed method. The results show that the penalized Bézier curve adapts well to local data trends without compromising overall smoothness 
650 4 |a Journal Article 
650 4 |a 53Z99 
650 4 |a 62P12 
650 4 |a 90C90 
650 4 |a Curve fitting 
650 4 |a Riemannian coordinate descent 
650 4 |a de casteljau algorithm 
650 4 |a generalized Bézier curve 
650 4 |a sparsity 
650 4 |a spherical data 
700 1 |a Shin, Jae-Kyung  |e verfasserin  |4 aut 
700 1 |a Koo, Ja-Yong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 50(2023), 9 vom: 15., Seite 1942-1961  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnns 
773 1 8 |g volume:50  |g year:2023  |g number:9  |g day:15  |g pages:1942-1961 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2022.2054962  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 50  |j 2023  |e 9  |b 15  |h 1942-1961