Hydric effects on thermal tolerances influence climate vulnerability in a high-latitude beetle

© 2023 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 29(2023), 18 vom: 27. Sept., Seite 5184-5198
1. Verfasser: Riddell, Eric A (VerfasserIn)
Weitere Verfasser: Mutanen, Marko, Ghalambor, Cameron K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article climate change climate vulnerability mechanistic niche model precipitation thermal tolerance water loss rates Water 059QF0KO0R
LEADER 01000caa a22002652c 4500
001 NLM358780209
003 DE-627
005 20250304232644.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.16830  |2 doi 
028 5 2 |a pubmed25n1195.xml 
035 |a (DE-627)NLM358780209 
035 |a (NLM)37376709 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Riddell, Eric A  |e verfasserin  |4 aut 
245 1 0 |a Hydric effects on thermal tolerances influence climate vulnerability in a high-latitude beetle 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 15.08.2023 
500 |a Date Revised 31.08.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2023 The Authors. Global Change Biology published by John Wiley & Sons Ltd. 
520 |a Species' thermal tolerances are used to estimate climate vulnerability, but few studies consider the role of the hydric environment in shaping thermal tolerances. As environments become hotter and drier, organisms often respond by limiting water loss to lower the risk of desiccation; however, reducing water loss may produce trade-offs that lower thermal tolerances if respiration becomes inhibited. Here, we measured the sensitivity of water loss rate and critical thermal maximum (CTmax ) to precipitation in nature and laboratory experiments that exposed click beetles (Coleoptera: Elateridae) to acute- and long-term humidity treatments. We also took advantage of their unique clicking behavior to characterize subcritical thermal tolerances. We found higher water loss rates in the dry acclimation treatment compared to the humid, and water loss rates were 3.2-fold higher for individuals that had experienced a recent precipitation event compared to individuals that had not. Acute humidity treatments did not affect CTmax , but precipitation indirectly affected CTmax through its effect on water loss rates. Contrary to our prediction, we found that CTmax was negatively associated with water loss rate, such that individuals with high water loss rate exhibited a lower CTmax . We then incorporated the observed variation of CTmax into a mechanistic niche model that coupled leaf and click beetle temperatures to predict climate vulnerability. The simulations indicated that indices of climate vulnerability can be sensitive to the effects of water loss physiology on thermal tolerances; moreover, exposure to temperatures above subcritical thermal thresholds is expected to increase by as much as 3.3-fold under future warming scenarios. The correlation between water loss rate and CTmax identifies the need to study thermal tolerances from a "whole-organism" perspective that considers relationships between physiological traits, and the population-level variation in CTmax driven by water loss rate complicates using this metric as a straightforward proxy of climate vulnerability 
650 4 |a Journal Article 
650 4 |a climate change 
650 4 |a climate vulnerability 
650 4 |a mechanistic niche model 
650 4 |a precipitation 
650 4 |a thermal tolerance 
650 4 |a water loss rates 
650 7 |a Water  |2 NLM 
650 7 |a 059QF0KO0R  |2 NLM 
700 1 |a Mutanen, Marko  |e verfasserin  |4 aut 
700 1 |a Ghalambor, Cameron K  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 29(2023), 18 vom: 27. Sept., Seite 5184-5198  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnas 
773 1 8 |g volume:29  |g year:2023  |g number:18  |g day:27  |g month:09  |g pages:5184-5198 
856 4 0 |u http://dx.doi.org/10.1111/gcb.16830  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2023  |e 18  |b 27  |c 09  |h 5184-5198