|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM358701937 |
003 |
DE-627 |
005 |
20240716232442.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1080/09593330.2023.2231142
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1472.xml
|
035 |
|
|
|a (DE-627)NLM358701937
|
035 |
|
|
|a (NLM)37368861
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Suresh, K
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Custom-designed 3D printed feed spacers and TFN membranes with MIL-101(Fe) for water recovery by forward osmosis
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 16.07.2024
|
500 |
|
|
|a Date Revised 16.07.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a In this work, a dual-pronged approach- (i) novel thin-film nanocomposite polyether sulfone (PES) membrane with MIL-101 (Fe) and (ii) 3D printed spacers were explored to enhance water recovery by forward osmosis. The concentration of PES, pore former, draw solution, and MIL-101(Fe) was optimised for maximum pure water flux (PWF) and minimum specific reverse solute flux (SRSF). The best membrane exhibited a PWF of 7.52 Lm-2 h-1 and an SRSF of 0.33 ± 0.03 gL-1 using 1.5 M NaCl and DI water feed. The M22 membrane with the diamond-type spacer demonstrated a PWF of 2.53 Lm-2 h-1 and SRSF of 0.75 gL-1 for emulsified oily wastewater feed. The novel spacer design imparted significant turbulence to the feed flow and a lower foulant resistance of 1.3 m-1 as compared to the ladder type (1.5 m-1) or commercial spacer (1.7 m-1). This arrangement could recover 19% pure water within 12 h of operation (98% oil rejection) with a ∼ 94% flux recovery after hydraulic wash
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a MIL-101(Fe): 3D printed feed spacer
|
650 |
|
4 |
|a Thin-film nanocomposite membrane
|
650 |
|
4 |
|a forward osmosis
|
650 |
|
4 |
|a oily water
|
650 |
|
7 |
|a Membranes, Artificial
|2 NLM
|
650 |
|
7 |
|a Metal-Organic Frameworks
|2 NLM
|
650 |
|
7 |
|a MIL-101
|2 NLM
|
650 |
|
7 |
|a Sulfones
|2 NLM
|
650 |
|
7 |
|a Wastewater
|2 NLM
|
650 |
|
7 |
|a polyether sulfone
|2 NLM
|
650 |
|
7 |
|a 25667-42-9
|2 NLM
|
650 |
|
7 |
|a Polymers
|2 NLM
|
700 |
1 |
|
|a Nambikkattu, Jenny
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kaleekkal, Noel Jacob
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lawrence, K Deepak
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Environmental technology
|d 1993
|g 45(2024), 19 vom: 12. Juli, Seite 3778-3790
|w (DE-627)NLM098202545
|x 1479-487X
|7 nnns
|
773 |
1 |
8 |
|g volume:45
|g year:2024
|g number:19
|g day:12
|g month:07
|g pages:3778-3790
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1080/09593330.2023.2231142
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 45
|j 2024
|e 19
|b 12
|c 07
|h 3778-3790
|