Large-Strain Surface Modeling Using Plasticity

Modeling arbitrarily large deformations of surfaces smoothly embedded in three-dimensional space is challenging. We give a new method to represent surfaces undergoing large spatially varying rotations and strains, based on differential geometry, and surface first and second fundamental forms. Method...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 30(2024), 8 vom: 01. Juli, Seite 5183-5197
1. Verfasser: Wen, Jiahao (VerfasserIn)
Weitere Verfasser: Wang, Bohan, Barbic, Jernej
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM358701279
003 DE-627
005 20240703232326.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2023.3289811  |2 doi 
028 5 2 |a pubmed24n1458.xml 
035 |a (DE-627)NLM358701279 
035 |a (NLM)37368795 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wen, Jiahao  |e verfasserin  |4 aut 
245 1 0 |a Large-Strain Surface Modeling Using Plasticity 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 02.07.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Modeling arbitrarily large deformations of surfaces smoothly embedded in three-dimensional space is challenging. We give a new method to represent surfaces undergoing large spatially varying rotations and strains, based on differential geometry, and surface first and second fundamental forms. Methods that penalize the difference between the current shape and the rest shape produce sharp spikes under large strains, and variational methods produce wiggles, whereas our method naturally supports large strains and rotations without any special treatment. For stable and smooth results, we demonstrate that the deformed surface has to locally satisfy compatibility conditions (Gauss-Codazzi equations) on the first and second fundamental forms. We then give a method to locally modify the surface first and second fundamental forms in a compatible way. We use those fundamental forms to define surface plastic deformations, and finally recover output surface vertex positions by minimizing the surface elastic energy under the plastic deformations. We demonstrate that our method makes it possible to smoothly deform triangle meshes to large spatially varying strains and rotations, while meeting user constraints 
650 4 |a Journal Article 
700 1 |a Wang, Bohan  |e verfasserin  |4 aut 
700 1 |a Barbic, Jernej  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 30(2024), 8 vom: 01. Juli, Seite 5183-5197  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:30  |g year:2024  |g number:8  |g day:01  |g month:07  |g pages:5183-5197 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2023.3289811  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2024  |e 8  |b 01  |c 07  |h 5183-5197