Macrophage-Hitchhiked Orally Administered β-Glucans-Functionalized Nanoparticles as "Precision-Guided Stealth Missiles" for Targeted Pancreatic Cancer Therapy
© 2023 Wiley-VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 40 vom: 15. Okt., Seite e2304735 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2023
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article desmoplastic stromal barrier immune checkpoint blockade intestinal epithelial barrier macrophage hitchhiking tumor microenvironment beta-Glucans |
Zusammenfassung: | © 2023 Wiley-VCH GmbH. The prognosis in cases of pancreatic ductal adenocarcinoma (PDAC) with current treatment modalities is poor owing to the highly desmoplastic tumor microenvironment (TME). Herein, a β-glucans-functionalized zinc-doxorubicin nanoparticle system (βGlus-ZnD NPs) that can be orally administered, is developed for targeted PDAC therapy. Following oral administration in PDAC-bearing mice, βGlus-ZnD NPs actively target/transpass microfold cells, overcome the intestinal epithelial barrier, and then undergo subsequent phagocytosis by endogenous macrophages (βGlus-ZnDMϕ). As hitchhiking cellular vehicles, βGlus-ZnD@Mϕ transits through the intestinal lymphatic system and enters systemic circulation, ultimately accumulating in the tumor tissue as a result of the tumor-homing and "stealth" properties that are conferred by endogenous Mϕ. Meanwhile, the Mϕ that hitchhikes βGlus-ZnD NPs is activated to produce matrix metalloproteinases, destroying the desmoplastic stromal barrier, and differentiates toward the M1 -like phenotype, modulating the TME and recruiting effector T cells, ultimately inducing apoptosis of the tumor cells. The combination of βGlus-ZnD@Mϕ and immune checkpoint blockade effectively inhibits the growth of the primary tumor and suppresses the development of metastasis. It thus represents an appealing approach to targeted PDAC therapy |
---|---|
Beschreibung: | Date Completed 23.10.2023 Date Revised 13.12.2023 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202304735 |