Predicting economic resilience of territories in Italy during the COVID-19 first lockdown

© 2023 Elsevier Ltd. All rights reserved.

Détails bibliographiques
Publié dans:Expert systems with applications. - 1999. - 232(2023) vom: 01. Dez., Seite 120803
Auteur principal: Pierri, Francesco (Auteur)
Autres auteurs: Scotti, Francesco, Bonaccorsi, Giovanni, Flori, Andrea, Pammolli, Fabio
Format: Article en ligne
Langue:English
Publié: 2023
Accès à la collection:Expert systems with applications
Sujets:Journal Article COVID-19 Classification Economic performance Lockdown Prediction Resilience
LEADER 01000caa a22002652c 4500
001 NLM358646294
003 DE-627
005 20250304230655.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.eswa.2023.120803  |2 doi 
028 5 2 |a pubmed25n1195.xml 
035 |a (DE-627)NLM358646294 
035 |a (NLM)37363270 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Pierri, Francesco  |e verfasserin  |4 aut 
245 1 0 |a Predicting economic resilience of territories in Italy during the COVID-19 first lockdown 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2023 Elsevier Ltd. All rights reserved. 
520 |a This paper aims to predict the economic resilience to crises of territories based on local pre-existing socioeconomic characteristics. Specifically, we consider the case of Italian municipalities during the first wave of the COVID-19 pandemic, leveraging a large-scale dataset of cardholders performing transactions in Point-of-Sales. Based on a set of machine learning classifiers, we show that network-based measures and variables related to the social, economic, demographic and environmental dimensions are relevant predictors of the economic resilience of Italian municipalities to the crisis. In particular, we find accurate classification performance both in balanced and un-balanced scenarios, as well as in the case we restrict the analysis to specific geographical areas. Our analysis predicts that territories with larger income per capita, soil consumption, concentration of real estate activities and commuting network centrality in terms of closeness and Pagerank constitute the set of most affected areas, experiencing the strongest reduction of economic activities during the COVID-19 pandemic. Overall, we provide an application of an early-warning system able to provide timely evidence to policymakers about the detrimental effects generated by natural disasters and severe crisis episodes, thus contributing to optimize public decision support systems 
650 4 |a Journal Article 
650 4 |a COVID-19 
650 4 |a Classification 
650 4 |a Economic performance 
650 4 |a Lockdown 
650 4 |a Prediction 
650 4 |a Resilience 
700 1 |a Scotti, Francesco  |e verfasserin  |4 aut 
700 1 |a Bonaccorsi, Giovanni  |e verfasserin  |4 aut 
700 1 |a Flori, Andrea  |e verfasserin  |4 aut 
700 1 |a Pammolli, Fabio  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Expert systems with applications  |d 1999  |g 232(2023) vom: 01. Dez., Seite 120803  |w (DE-627)NLM098196782  |x 0957-4174  |7 nnas 
773 1 8 |g volume:232  |g year:2023  |g day:01  |g month:12  |g pages:120803 
856 4 0 |u http://dx.doi.org/10.1016/j.eswa.2023.120803  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 232  |j 2023  |b 01  |c 12  |h 120803