Video summarization using deep learning techniques : a detailed analysis and investigation

© The Author(s), under exclusive licence to Springer Nature B.V. 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript v...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Artificial intelligence review. - 1998. - (2023) vom: 15. März, Seite 1-39
1. Verfasser: Saini, Parul (VerfasserIn)
Weitere Verfasser: Kumar, Krishan, Kashid, Shamal, Saini, Ashray, Negi, Alok
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Artificial intelligence review
Schlagworte:Journal Article Critical information in videos Event summarization Multimedia analysis Surveillance systems Video analysis
LEADER 01000caa a22002652c 4500
001 NLM358642493
003 DE-627
005 20250304230621.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1007/s10462-023-10444-0  |2 doi 
028 5 2 |a pubmed25n1195.xml 
035 |a (DE-627)NLM358642493 
035 |a (NLM)37362890 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Saini, Parul  |e verfasserin  |4 aut 
245 1 0 |a Video summarization using deep learning techniques  |b a detailed analysis and investigation 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 01.07.2023 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a © The Author(s), under exclusive licence to Springer Nature B.V. 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 
520 |a One of the critical multimedia analysis problems in today's digital world is video summarization (VS). Many VS methods have been suggested based on deep learning methods. Nevertheless, These are inefficient in processing, extracting, and deriving information in the minimum amount of time from long-duration videos. Detailed analysis and investigation of numerous deep learning approach accomplished to determine root of problems connected with different deep learning methods in identifying and summarizing the essential activities in such videos. Various deep learning techniques have been investigated and examined to detect the event and summarization capability for detecting and summarizing multiple activities. Keyframe selection Event detection, categorization, and the activity feature summarization correspond to each activity. The limitations related to each category are also discussed in depth. Concerns about detecting low activity using the deep network on various types of public datasets are also discussed. Viable strategies are suggested to evaluate and improve the generated video summaries on such datasets. Moreover, Potential recommended applications based on literature are listed out. Various deep learning tools for experimental analysis have also been discussed in the paper. Future directions are presented for further exploration of research in VS using deep learning strategies 
650 4 |a Journal Article 
650 4 |a Critical information in videos 
650 4 |a Event summarization 
650 4 |a Multimedia analysis 
650 4 |a Surveillance systems 
650 4 |a Video analysis 
700 1 |a Kumar, Krishan  |e verfasserin  |4 aut 
700 1 |a Kashid, Shamal  |e verfasserin  |4 aut 
700 1 |a Saini, Ashray  |e verfasserin  |4 aut 
700 1 |a Negi, Alok  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Artificial intelligence review  |d 1998  |g (2023) vom: 15. März, Seite 1-39  |w (DE-627)NLM098184490  |x 0269-2821  |7 nnas 
773 1 8 |g year:2023  |g day:15  |g month:03  |g pages:1-39 
856 4 0 |u http://dx.doi.org/10.1007/s10462-023-10444-0  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2023  |b 15  |c 03  |h 1-39