Medical image data augmentation : techniques, comparisons and interpretations

© The Author(s), under exclusive licence to Springer Nature B.V. 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript v...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Artificial intelligence review. - 1998. - (2023) vom: 20. März, Seite 1-45
1. Verfasser: Goceri, Evgin (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Artificial intelligence review
Schlagworte:Journal Article Data augmentation GAN Medical images Synthesis
LEADER 01000caa a22002652c 4500
001 NLM358642477
003 DE-627
005 20250304230621.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1007/s10462-023-10453-z  |2 doi 
028 5 2 |a pubmed25n1195.xml 
035 |a (DE-627)NLM358642477 
035 |a (NLM)37362888 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Goceri, Evgin  |e verfasserin  |4 aut 
245 1 0 |a Medical image data augmentation  |b techniques, comparisons and interpretations 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 28.09.2023 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a © The Author(s), under exclusive licence to Springer Nature B.V. 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 
520 |a Designing deep learning based methods with medical images has always been an attractive area of research to assist clinicians in rapid examination and accurate diagnosis. Those methods need a large number of datasets including all variations in their training stages. On the other hand, medical images are always scarce due to several reasons, such as not enough patients for some diseases, patients do not want to allow their images to be used, lack of medical equipment or equipment, inability to obtain images that meet the desired criteria. This issue leads to bias in datasets, overfitting, and inaccurate results. Data augmentation is a common solution to overcome this issue and various augmentation techniques have been applied to different types of images in the literature. However, it is not clear which data augmentation technique provides more efficient results for which image type since different diseases are handled, different network architectures are used, and these architectures are trained and tested with different numbers of data sets in the literature. Therefore, in this work, the augmentation techniques used to improve performances of deep learning based diagnosis of the diseases in different organs (brain, lung, breast, and eye) from different imaging modalities (MR, CT, mammography, and fundoscopy) have been examined. Also, the most commonly used augmentation methods have been implemented, and their effectiveness in classifications with a deep network has been discussed based on quantitative performance evaluations. Experiments indicated that augmentation techniques should be chosen carefully according to image types 
650 4 |a Journal Article 
650 4 |a Data augmentation 
650 4 |a GAN 
650 4 |a Medical images 
650 4 |a Synthesis 
773 0 8 |i Enthalten in  |t Artificial intelligence review  |d 1998  |g (2023) vom: 20. März, Seite 1-45  |w (DE-627)NLM098184490  |x 0269-2821  |7 nnas 
773 1 8 |g year:2023  |g day:20  |g month:03  |g pages:1-45 
856 4 0 |u http://dx.doi.org/10.1007/s10462-023-10453-z  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2023  |b 20  |c 03  |h 1-45