The role of artificial intelligence in developing a banking risk index : an application of Adaptive Neural Network-Based Fuzzy Inference System (ANFIS)

© The Author(s) 2023.

Bibliographische Detailangaben
Veröffentlicht in:Artificial intelligence review. - 1998. - (2023) vom: 24. Apr., Seite 1-23
1. Verfasser: Ahmed, Ibrahim Elsiddig (VerfasserIn)
Weitere Verfasser: Mehdi, Riyadh, Mohamed, Elfadil A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Artificial intelligence review
Schlagworte:Journal Article Artificial intelligence Banking risk index GCC banks Neuro-fuzzy systems
LEADER 01000caa a22002652c 4500
001 NLM358642442
003 DE-627
005 20250304230621.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1007/s10462-023-10473-9  |2 doi 
028 5 2 |a pubmed25n1195.xml 
035 |a (DE-627)NLM358642442 
035 |a (NLM)37362885 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ahmed, Ibrahim Elsiddig  |e verfasserin  |4 aut 
245 1 4 |a The role of artificial intelligence in developing a banking risk index  |b an application of Adaptive Neural Network-Based Fuzzy Inference System (ANFIS) 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 28.09.2023 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a © The Author(s) 2023. 
520 |a Banking risk measurement and management remain one of many challenges for managers and policymakers. This study contributes to the banking literature and practice in two ways by (a) proposing a risk ranking index based on the Mahalanobis Distance (MD) between a multidimensional point representing a bank's risk measures and the corresponding critical ratios set by the banking authorities and (b) determining the relative importance of a bank's risk ratios in affecting its financial standing using an Adaptive Neuro-Fuzzy Inference System. In this study, ten financial ratios representing five risk areas were considered, namely: Capital Adequacy, Credit, Liquidity, Earning Quality, and Operational risk. Data from 45 Gulf banks for the period 2016-2020 was used to develop the model. Our findings indicate that a bank is in a sound risk position at the 99%, 95%, and 90% confidence level if its Mahalanobis distance exceeds 4.82, 4.28, and 4.0, respectively. The maximum distance computed for the banks in this study was 9.31; only five out of the forty-five banks were below the 4.82 and one below the 4.28 and 4.0 thresholds at 3.96. Sensitivity analysis of the risks indicated that the Net Interest Margin is the most significant factor in explaining variations in a bank's risk position, followed by Capital Adequacy Ratio, Common Equity Tier1, and Tier1 Equity in order. The remaining financial ratios: Non-Performing Loans, Equity Leverage, Cost Income Ratio, Loans to Total Assets, and Loans to Deposits have the least influence in the order given; the Provisional Loans Ratio appears to have no influence 
650 4 |a Journal Article 
650 4 |a Artificial intelligence 
650 4 |a Banking risk index 
650 4 |a GCC banks 
650 4 |a Neuro-fuzzy systems 
700 1 |a Mehdi, Riyadh  |e verfasserin  |4 aut 
700 1 |a Mohamed, Elfadil A  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Artificial intelligence review  |d 1998  |g (2023) vom: 24. Apr., Seite 1-23  |w (DE-627)NLM098184490  |x 0269-2821  |7 nnas 
773 1 8 |g year:2023  |g day:24  |g month:04  |g pages:1-23 
856 4 0 |u http://dx.doi.org/10.1007/s10462-023-10473-9  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2023  |b 24  |c 04  |h 1-23