Blockchain-enabled healthcare monitoring system for early Monkeypox detection

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author se...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing. - 1998. - (2023) vom: 20. Apr., Seite 1-25
1. Verfasser: Gupta, Aditya (VerfasserIn)
Weitere Verfasser: Bhagat, Monu, Jain, Vibha
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:The Journal of supercomputing
Schlagworte:Journal Article Blockchain IPFS Machine learning Monkeypox Transfer learning
LEADER 01000caa a22002652c 4500
001 NLM358606810
003 DE-627
005 20250304230121.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1007/s11227-023-05288-y  |2 doi 
028 5 2 |a pubmed25n1195.xml 
035 |a (DE-627)NLM358606810 
035 |a (NLM)37359326 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gupta, Aditya  |e verfasserin  |4 aut 
245 1 0 |a Blockchain-enabled healthcare monitoring system for early Monkeypox detection 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 28.09.2023 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 
520 |a The recent emergence of monkeypox poses a life-threatening challenge to humans and has become one of the global health concerns after COVID-19. Currently, machine learning-based smart healthcare monitoring systems have demonstrated significant potential in image-based diagnosis including brain tumor identification and lung cancer diagnosis. In a similar fashion, the applications of machine learning can be utilized for the early identification of monkeypox cases. However, sharing critical health information with various actors such as patients, doctors, and other healthcare professionals in a secure manner remains a research challenge. Motivated by this fact, our paper presents a blockchain-enabled conceptual framework for the early detection and classification of monkeypox using transfer learning. The proposed framework is experimentally demonstrated in Python 3.9 using a monkeypox dataset of 1905 images obtained from the GitHub repository. To validate the effectiveness of the proposed model, various performance estimators, namely accuracy, recall, precision, and F1-score, are employed. The performance of different transfer learning models, namely Xception, VGG19, and VGG16, is compared against the presented methodology. Based on the comparison, it is evident that the proposed methodology effectively detects and classifies the monkeypox disease with a classification accuracy of 98.80%. In future, multiple skin diseases such as measles and chickenpox can be diagnosed using the proposed model on the skin lesion datasets 
650 4 |a Journal Article 
650 4 |a Blockchain 
650 4 |a IPFS 
650 4 |a Machine learning 
650 4 |a Monkeypox 
650 4 |a Transfer learning 
700 1 |a Bhagat, Monu  |e verfasserin  |4 aut 
700 1 |a Jain, Vibha  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t The Journal of supercomputing  |d 1998  |g (2023) vom: 20. Apr., Seite 1-25  |w (DE-627)NLM098252410  |x 0920-8542  |7 nnas 
773 1 8 |g year:2023  |g day:20  |g month:04  |g pages:1-25 
856 4 0 |u http://dx.doi.org/10.1007/s11227-023-05288-y  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2023  |b 20  |c 04  |h 1-25