Model-based and model-free deep features fusion for high performed human gait recognition

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author se...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing. - 1998. - (2023) vom: 19. März, Seite 1-38
1. Verfasser: Yousef, Reem N (VerfasserIn)
Weitere Verfasser: Khalil, Abeer T, Samra, Ahmed S, Ata, Mohamed Maher
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:The Journal of supercomputing
Schlagworte:Journal Article CASIA gait dataset Convolutional neural network (CNN) Model-based method Model-free method Silhouette images
LEADER 01000caa a22002652 4500
001 NLM358606799
003 DE-627
005 20240914232306.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1007/s11227-023-05156-9  |2 doi 
028 5 2 |a pubmed24n1533.xml 
035 |a (DE-627)NLM358606799 
035 |a (NLM)37359324 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yousef, Reem N  |e verfasserin  |4 aut 
245 1 0 |a Model-based and model-free deep features fusion for high performed human gait recognition 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 14.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 
520 |a In the last decade, the need for a non-contact biometric model for recognizing candidates has increased, especially after the pandemic of COVID-19 appeared and spread worldwide. This paper presents a novel deep convolutional neural network (CNN) model that guarantees quick, safe, and precise human authentication via their poses and walking style. The concatenated fusion between the proposed CNN and a fully connected model has been formulated, utilized, and tested. The proposed CNN extracts the human features from two main sources: (1) human silhouette images according to model-free and (2) human joints, limbs, and static joint distances according to a model-based via a novel, fully connected deep-layer structure. The most commonly used dataset, CASIA gait families, has been utilized and tested. Numerous performance metrics have been evaluated to measure the system quality, including accuracy, specificity, sensitivity, false negative rate, and training time. Experimental results reveal that the proposed model can enhance recognition performance in a superior manner compared with the latest state-of-the-art studies. Moreover, the suggested system introduces a robust real-time authentication with any covariate conditions, scoring 99.8% and 99.6% accuracy in identifying casia (B) and casia (A) datasets, respectively 
650 4 |a Journal Article 
650 4 |a CASIA gait dataset 
650 4 |a Convolutional neural network (CNN) 
650 4 |a Model-based method 
650 4 |a Model-free method 
650 4 |a Silhouette images 
700 1 |a Khalil, Abeer T  |e verfasserin  |4 aut 
700 1 |a Samra, Ahmed S  |e verfasserin  |4 aut 
700 1 |a Ata, Mohamed Maher  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t The Journal of supercomputing  |d 1998  |g (2023) vom: 19. März, Seite 1-38  |w (DE-627)NLM098252410  |x 0920-8542  |7 nnns 
773 1 8 |g year:2023  |g day:19  |g month:03  |g pages:1-38 
856 4 0 |u http://dx.doi.org/10.1007/s11227-023-05156-9  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2023  |b 19  |c 03  |h 1-38