Robust PANIMXene/GQDs-Based Fiber Fabric Electrodes via Microfluidic Wet-Fusing Spinning Chemistry

© 2023 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 38 vom: 24. Sept., Seite e2302326
1. Verfasser: Qiu, Hui (VerfasserIn)
Weitere Verfasser: Qu, Xiaowei, Zhang, Yujiao, Chen, Su, Shen, Yizhong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article MXenes PANI energy storage graphene quantum dots supercapacitors
Beschreibung
Zusammenfassung:© 2023 Wiley-VCH GmbH.
Two-dimensional transition metal titanium carbide (Ti3 C2 Tx ) as a promising candidate material for batteries and supercapacitors has shown excellent electrochemical performance, but it is difficult to meet practical applications because of its poor morphology structure, low mechanical properties, and expensive process. Here, an applied and efficient method based on microfluidic wet-fusing spinning chemistry (MWSC) is proposed to construct hierarchical structure of MXene-based fiber fabrics (MFFs), allowing the availability of MFF electrodes with ultrastrong toughness, high conductivity, and easily machinable properties. First, a dot-sheet structure constructed by graphene quantum dots (GQDs) and MXene nanosheets with multianchor interaction in the microchannel of a microfluidic device enhances the mechanical strength of MXene fibers; next, the interfused fiber network structure of Ti3 C2 Tx /GQDs fabrics assembled by the MWSC process enhances the deformability of the whole fabrics; finally, the core-shell structure of PANITi3 C2 Tx /GQDs architected by in-situ polymerization growth of polyaniline (PANI) nanofibers provides more ion-accessible pathways and sites for kinetic migration and ion accumulation. Through the morphology and microstructure design, this strategy has directive significance to the large-scale preparation of conductive fabric electrodes and provides a viable solution for simultaneously enhancing mechanical strength and electrochemical performance of conductive fabric electrodes
Beschreibung:Date Revised 21.09.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202302326