Machine learning uncovers accumulation mechanism of flavonoid compounds in Polygonatum cyrtonema Hua

Copyright © 2023 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 201(2023) vom: 30. Aug., Seite 107839
1. Verfasser: Han, Zhigang (VerfasserIn)
Weitere Verfasser: Gong, Qiqi, Huang, Suya, Meng, Xinyue, Xu, Yi, Li, Lige, Shi, Yan, Lin, Junhao, Chen, Xueliang, Li, Cong, Ma, Haijie, Liu, Jingjing, Zhang, Xinfeng, Chen, Donghong, Si, Jinping
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Biosynthesis Flavonoid compounds Machine learning Metabolome Polygonatum cyrtonema Hua Flavonoids
LEADER 01000naa a22002652 4500
001 NLM358540712
003 DE-627
005 20231226074951.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.plaphy.2023.107839  |2 doi 
028 5 2 |a pubmed24n1195.xml 
035 |a (DE-627)NLM358540712 
035 |a (NLM)37352696 
035 |a (PII)S0981-9428(23)00350-9 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Han, Zhigang  |e verfasserin  |4 aut 
245 1 0 |a Machine learning uncovers accumulation mechanism of flavonoid compounds in Polygonatum cyrtonema Hua 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 14.08.2023 
500 |a Date Revised 14.08.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2023 Elsevier Masson SAS. All rights reserved. 
520 |a The compositions and yield of flavonoid compounds of Polygonatum cyrtonema Hua (PC) are important indices of the quality of medicinal materials. However, the flavonoids compositions and accumulation mechanism are still unclear in PC. Here, we identified 22 flavonoids using widely-targeted metabolome analysis in 15 genotypes of PC. Then weighted gene co-expression network analysis based on 45 transcriptome samples was performed to construct 12 co-expressed modules, in which blue module highly correlated with flavonoids was identified. Furthermore, 4 feature genes including PcCHS1, PcCHI, PcCHS2 and PcCHR5 were identified from 94 hub genes in blue module via machine learning methods support vector machine-recursive feature elimination (SVM-RFE) and random forest (RF), and their functions on metabolic flux of flavonoids pathway were confirmed by tobacco transient expression system. Our findings identified representative flavonoids and key enzymes in PC that provided new insight for elite breeding rich in flavonoids, and thus will be beneficial for rapid development of great potential economic and medicinal value of PC 
650 4 |a Journal Article 
650 4 |a Biosynthesis 
650 4 |a Flavonoid compounds 
650 4 |a Machine learning 
650 4 |a Metabolome 
650 4 |a Polygonatum cyrtonema Hua 
650 7 |a Flavonoids  |2 NLM 
700 1 |a Gong, Qiqi  |e verfasserin  |4 aut 
700 1 |a Huang, Suya  |e verfasserin  |4 aut 
700 1 |a Meng, Xinyue  |e verfasserin  |4 aut 
700 1 |a Xu, Yi  |e verfasserin  |4 aut 
700 1 |a Li, Lige  |e verfasserin  |4 aut 
700 1 |a Shi, Yan  |e verfasserin  |4 aut 
700 1 |a Lin, Junhao  |e verfasserin  |4 aut 
700 1 |a Chen, Xueliang  |e verfasserin  |4 aut 
700 1 |a Li, Cong  |e verfasserin  |4 aut 
700 1 |a Ma, Haijie  |e verfasserin  |4 aut 
700 1 |a Liu, Jingjing  |e verfasserin  |4 aut 
700 1 |a Zhang, Xinfeng  |e verfasserin  |4 aut 
700 1 |a Chen, Donghong  |e verfasserin  |4 aut 
700 1 |a Si, Jinping  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Plant physiology and biochemistry : PPB  |d 1991  |g 201(2023) vom: 30. Aug., Seite 107839  |w (DE-627)NLM098178261  |x 1873-2690  |7 nnns 
773 1 8 |g volume:201  |g year:2023  |g day:30  |g month:08  |g pages:107839 
856 4 0 |u http://dx.doi.org/10.1016/j.plaphy.2023.107839  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 201  |j 2023  |b 30  |c 08  |h 107839