Metabolic engineering in hairy roots : An outlook on production of plant secondary metabolites

Copyright © 2023 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 201(2023) vom: 30. Aug., Seite 107847
1. Verfasser: Bagal, Diksha (VerfasserIn)
Weitere Verfasser: Chowdhary, Aksar Ali, Mehrotra, Shakti, Mishra, Sonal, Rathore, Sonica, Srivastava, Vikas
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Review Agrobacterium rhizogenes Genome editing Hairy roots Metabolic engineering Secondary metabolites Alkaloids
Beschreibung
Zusammenfassung:Copyright © 2023 Elsevier Masson SAS. All rights reserved.
Plants are one of the vital sources of secondary metabolites. These secondary metabolites have diverse roles in human welfare, including therapeutic implication. Nevertheless, secondary metabolite yields obtained through the exploitation of natural plant populations is insufficient to meet the commercial demand due to their accumulation in low volumes. Besides, in-planta synthesis of these important metabolites is directly linked with the age and growing conditions of the plant. Such limitations have paved the way for the exploration of alternative production methodologies. Hairy root cultures, induced after the interaction of plants with Rhizobium rhizogenes (Agrobacterium rhizogenes), are a practical solution for producing valuable secondary metabolite at low cost and without the influence of seasonal, geographic or climatic variations. Hairy root cultures also offer the opportunity to get combined with other yield enhancements strategies (precursor feeding, elicitation and metabolic engineering) to further stimulate and/or enhance their production potential. Applications of metabolic engineering in exploiting hairy root cultures attracted the interest of several research groups as a means of yield enhancement. Currently, several engineering approaches like overexpression and silencing of pathway genes, and transcription factor overexpression are used to boost metabolite production, along with the contextual success of genome editing. This review attempts to cover metabolic engineering in hairy roots for the production of secondary metabolites, with a primary emphasis on alkaloids, and discusses prospects for taking this research forward to meet desired production demands
Beschreibung:Date Completed 14.08.2023
Date Revised 14.08.2023
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690
DOI:10.1016/j.plaphy.2023.107847