|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM358536855 |
003 |
DE-627 |
005 |
20231226074946.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202301819
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1195.xml
|
035 |
|
|
|a (DE-627)NLM358536855
|
035 |
|
|
|a (NLM)37352307
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Muñoz-Ortiz, Tamara
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a 3D Optical Coherence Thermometry Using Polymeric Nanogels
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 18.08.2023
|
500 |
|
|
|a Date Revised 18.08.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.
|
520 |
|
|
|a In nanothermometry, the use of nanoparticles as thermal probes enables remote and minimally invasive sensing. In the biomedical context, nanothermometry has emerged as a powerful tool where traditional approaches, like infrared thermal sensing and contact thermometers, fall short. Despite the strides of this technology in preclinical settings, nanothermometry is not mature enough to be translated to the bedside. This is due to two major hurdles: the inability to perform 3D thermal imaging and the requirement for tools that are readily available in the clinics. This work simultaneously overcomes both limitations by proposing the technology of optical coherence thermometry (OCTh). This is achieved by combining thermoresponsive polymeric nanogels and optical coherence tomography (OCT)-a 3D imaging technology routinely used in clinical practice. The volume phase transition of the thermoresponsive nanogels causes marked changes in their refractive index, making them temperature-sensitive OCT contrast agents. The ability of OCTh to provide 3D thermal images is demonstrated in tissue phantoms subjected to photothermal processes, and its reliability is corroborated by comparing experimental results with numerical simulations. The results included in this work set credible foundations for the implementation of nanothermometry in the form of OCTh in clinical practice
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a 3D imaging
|
650 |
|
4 |
|a nanothermometry
|
650 |
|
4 |
|a optical coherence tomography (OCT)
|
650 |
|
4 |
|a thermoresponsive nanogels
|
650 |
|
7 |
|a Nanogels
|2 NLM
|
650 |
|
7 |
|a Polymers
|2 NLM
|
700 |
1 |
|
|a Alayeto, Idoia
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lifante, José
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ortgies, Dirk H
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Marin, Riccardo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Martín Rodríguez, Emma
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Iglesias de la Cruz, María Del Carmen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lifante-Pedrola, Ginés
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Rubio-Retama, Jorge
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jaque, Daniel
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 35(2023), 33 vom: 10. Aug., Seite e2301819
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:35
|g year:2023
|g number:33
|g day:10
|g month:08
|g pages:e2301819
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202301819
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 35
|j 2023
|e 33
|b 10
|c 08
|h e2301819
|