Tomato miR156-targeted SlSBP15 represses shoot branching by modulating hormone dynamics and interacting with GOBLET and BRANCHED1b

© The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 74(2023), 17 vom: 13. Sept., Seite 5124-5139
1. Verfasser: Barrera-Rojas, Carlos Hernán (VerfasserIn)
Weitere Verfasser: Vicente, Mateus Henrique, Pinheiro Brito, Diego Armando, Silva, Eder M, Lopez, Aitor Muñoz, Ferigolo, Leticia F, do Carmo, Rafael Monteiro, Silva, Carolina M S, Silva, Geraldo F F, Correa, Joao P O, Notini, Marcela M, Freschi, Luciano, Cubas, Pilar, Nogueira, Fabio T S
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't BRANCHED1b GOBLET SlSBP15 Auxin miR156 shoot branching Hormones MicroRNAs Plant Proteins
Beschreibung
Zusammenfassung:© The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.
The miRNA156 (miR156)/SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE (SPL/SBP) regulatory hub is highly conserved among phylogenetically distinct species, but how it interconnects multiple pathways to converge to common integrators controlling shoot architecture is still unclear. Here, we demonstrated that the miR156/SlSBP15 node modulates tomato shoot branching by connecting multiple phytohormones with classical genetic pathways regulating both axillary bud development and outgrowth. miR156-overexpressing plants (156-OE) displayed high shoot branching, whereas plants overexpressing a miR156-resistant SlSBP15 allele (rSBP15) showed arrested shoot branching. Importantly, the rSBP15 allele was able to partially restore the wild-type shoot branching phenotype in the 156-OE background. rSBP15 plants have tiny axillary buds, and their activation is dependent on shoot apex-derived auxin transport inhibition. Hormonal measurements revealed that indole-3-acetic acid (IAA) and abscisic acid (ABA) concentrations were lower in 156-OE and higher in rSBP15 axillary buds, respectively. Genetic and molecular data indicated that SlSBP15 regulates axillary bud development and outgrowth by inhibiting auxin transport and GOBLET (GOB) activity, and by interacting with tomato BRANCHED1b (SlBRC1b) to control ABA levels within axillary buds. Collectively, our data provide a new mechanism by which the miR156/SPL/SBP hub regulates shoot branching, and suggest that modulating SlSBP15 activity might have potential applications in shaping tomato shoot architecture
Beschreibung:Date Completed 15.09.2023
Date Revised 18.09.2023
published: Print
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/erad238