A New Language-Independent Deep CNN for Scene Text Detection and Style Transfer in Social Media Images

Due to the adverse effect of quality caused by different social media and arbitrary languages in natural scenes, detecting text from social media images and transferring its style is challenging. This paper presents a novel end-to-end model for text detection and text style transfer in social media...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 06., Seite 3552-3566
1. Verfasser: Shivakumara, Palaiahnakote (VerfasserIn)
Weitere Verfasser: Banerjee, Ayan, Pal, Umapada, Nandanwar, Lokesh, Lu, Tong, Liu, Cheng-Lin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM358444144
003 DE-627
005 20240605232123.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3287038  |2 doi 
028 5 2 |a pubmed24n1429.xml 
035 |a (DE-627)NLM358444144 
035 |a (NLM)37342944 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shivakumara, Palaiahnakote  |e verfasserin  |4 aut 
245 1 2 |a A New Language-Independent Deep CNN for Scene Text Detection and Style Transfer in Social Media Images 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.06.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Due to the adverse effect of quality caused by different social media and arbitrary languages in natural scenes, detecting text from social media images and transferring its style is challenging. This paper presents a novel end-to-end model for text detection and text style transfer in social media images. The key notion of the proposed work is to find dominant information, such as fine details in the degraded images (social media images), and then restore the structure of character information. Therefore, we first introduce a novel idea of extracting gradients from the frequency domain of the input image to reduce the adverse effect of different social media, which outputs text candidate points. The text candidates are further connected into components and used for text detection via a UNet++ like network with an EfficientNet backbone (EffiUNet++). Then, to deal with the style transfer issue, we devise a generative model, which comprises a target encoder and style parameter networks (TESP-Net) to generate the target characters by leveraging the recognition results from the first stage. Specifically, a series of residual mapping and a position attention module are devised to improve the shape and structure of generated characters. The whole model is trained end-to-end so as to optimize the performance. Experiments on our social media dataset, benchmark datasets of natural scene text detection and text style transfer show that the proposed model outperforms the existing text detection and style transfer methods in multilingual and cross-language scenario 
650 4 |a Journal Article 
700 1 |a Banerjee, Ayan  |e verfasserin  |4 aut 
700 1 |a Pal, Umapada  |e verfasserin  |4 aut 
700 1 |a Nandanwar, Lokesh  |e verfasserin  |4 aut 
700 1 |a Lu, Tong  |e verfasserin  |4 aut 
700 1 |a Liu, Cheng-Lin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 06., Seite 3552-3566  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:32  |g year:2023  |g day:06  |g pages:3552-3566 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3287038  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 06  |h 3552-3566