Acoustodynamic Covalent Materials Engineering for the Remote Control of Physical Properties Inside Materials

© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 39 vom: 05. Sept., Seite e2304104
1. Verfasser: Honda, Satoshi (VerfasserIn)
Weitere Verfasser: Oka, Minami, Fuke, Kazuki, Khuri-Yakub, Pierre T, Pai, Chi Nan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article cross-linked materials dynamic covalent materials high-intensity focused ultrasound modulation of mechanical properties vat-polymerization 3D printing
Beschreibung
Zusammenfassung:© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.
Advances in vat photopolymerization (VP) 3D printing (3DP) technology enable the production of highly precise 3D objects. However, it is a major challenge to create dynamic functionalities and to manipulate the physical properties of the inherently insoluble and infusible cross-linked material generated from VP-3DP without reproduction. The fabrication of light- and high-intensity focused ultrasound (HIFU)-responsive cross-linked polymeric materials linked with hexaarylbiimidazole (HABI) in polymer chains based on VP-3DP is reported here. Although the photochemistry of HABI produces triphenylimidazolyl radicals (TPIRs) during the process of VP-3DP, the orthogonality of the photochemistry of HABI and photopolymerization enables the introduction of reversible cross-links derived from HABIs in the resulting 3D-printed objects. While photostimulation cleaves a covalent bond between two imidazoles in HABI to generate TPIRs only near the surface of the 3D-printed objects, HIFU triggers cleavage in the interior of materials. In addition, HIFU travels beyond an obstacle to induce a response of HABI-embedded cross-linked polymers, which cannot be attainable with photostimulation. The present system would be beneficial for tuning the physical properties and recycling of various polymeric materials, but it will also open the door for pinpoint modification, healing, and reshaping of materials when coupled to various dynamic covalent materials
Beschreibung:Date Revised 27.09.2023
published: Print-Electronic
Citation Status Publisher
ISSN:1521-4095
DOI:10.1002/adma.202304104