Domain-Scalable Unpaired Image Translation via Latent Space Anchoring

Unpaired image-to-image translation (UNIT) aims to map images between two visual domains without paired training data. However, given a UNIT model trained on certain domains, it is difficult for current methods to incorporate new domains because they often need to train the full model on both existi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 10 vom: 08. Okt., Seite 11707-11719
1. Verfasser: Huang, Siyu (VerfasserIn)
Weitere Verfasser: An, Jie, Wei, Donglai, Lin, Zudi, Luo, Jiebo, Pfister, Hanspeter
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM358405475
003 DE-627
005 20240403234851.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3287774  |2 doi 
028 5 2 |a pubmed24n1362.xml 
035 |a (DE-627)NLM358405475 
035 |a (NLM)37339034 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Huang, Siyu  |e verfasserin  |4 aut 
245 1 0 |a Domain-Scalable Unpaired Image Translation via Latent Space Anchoring 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 03.04.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Unpaired image-to-image translation (UNIT) aims to map images between two visual domains without paired training data. However, given a UNIT model trained on certain domains, it is difficult for current methods to incorporate new domains because they often need to train the full model on both existing and new domains. To address this problem, we propose a new domain-scalable UNIT method, termed as latent space anchoring, which can be efficiently extended to new visual domains and does not need to fine-tune encoders and decoders of existing domains. Our method anchors images of different domains to the same latent space of frozen GANs by learning lightweight encoder and regressor models to reconstruct single-domain images. In the inference phase, the learned encoders and decoders of different domains can be arbitrarily combined to translate images between any two domains without fine-tuning. Experiments on various datasets show that the proposed method achieves superior performance on both standard and domain-scalable UNIT tasks in comparison with the state-of-the-art methods 
650 4 |a Journal Article 
700 1 |a An, Jie  |e verfasserin  |4 aut 
700 1 |a Wei, Donglai  |e verfasserin  |4 aut 
700 1 |a Lin, Zudi  |e verfasserin  |4 aut 
700 1 |a Luo, Jiebo  |e verfasserin  |4 aut 
700 1 |a Pfister, Hanspeter  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 10 vom: 08. Okt., Seite 11707-11719  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:10  |g day:08  |g month:10  |g pages:11707-11719 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3287774  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 10  |b 08  |c 10  |h 11707-11719