Efficient Token-Guided Image-Text Retrieval With Consistent Multimodal Contrastive Training

Image-text retrieval is a central problem for understanding the semantic relationship between vision and language, and serves as the basis for various visual and language tasks. Most previous works either simply learn coarse-grained representations of the overall image and text, or elaborately estab...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 20., Seite 3622-3633
1. Verfasser: Liu, Chong (VerfasserIn)
Weitere Verfasser: Zhang, Yuqi, Wang, Hongsong, Chen, Weihua, Wang, Fan, Huang, Yan, Shen, Yi-Dong, Wang, Liang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM35840536X
003 DE-627
005 20231226074653.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3286710  |2 doi 
028 5 2 |a pubmed24n1194.xml 
035 |a (DE-627)NLM35840536X 
035 |a (NLM)37339023 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Chong  |e verfasserin  |4 aut 
245 1 0 |a Efficient Token-Guided Image-Text Retrieval With Consistent Multimodal Contrastive Training 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 04.07.2023 
500 |a Date Revised 04.07.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Image-text retrieval is a central problem for understanding the semantic relationship between vision and language, and serves as the basis for various visual and language tasks. Most previous works either simply learn coarse-grained representations of the overall image and text, or elaborately establish the correspondence between image regions or pixels and text words. However, the close relations between coarse- and fine-grained representations for each modality are important for image-text retrieval but almost neglected. As a result, such previous works inevitably suffer from low retrieval accuracy or heavy computational cost. In this work, we address image-text retrieval from a novel perspective by combining coarse- and fine-grained representation learning into a unified framework. This framework is consistent with human cognition, as humans simultaneously pay attention to the entire sample and regional elements to understand the semantic content. To this end, a Token-Guided Dual Transformer (TGDT) architecture which consists of two homogeneous branches for image and text modalities, respectively, is proposed for image-text retrieval. The TGDT incorporates both coarse- and fine-grained retrievals into a unified framework and beneficially leverages the advantages of both retrieval approaches. A novel training objective called Consistent Multimodal Contrastive (CMC) loss is proposed accordingly to ensure the intra- and inter-modal semantic consistencies between images and texts in the common embedding space. Equipped with a two-stage inference method based on the mixed global and local cross-modal similarity, the proposed method achieves state-of-the-art retrieval performances with extremely low inference time when compared with representative recent approaches. Code is publicly available: github.com/LCFractal/TGDT 
650 4 |a Journal Article 
700 1 |a Zhang, Yuqi  |e verfasserin  |4 aut 
700 1 |a Wang, Hongsong  |e verfasserin  |4 aut 
700 1 |a Chen, Weihua  |e verfasserin  |4 aut 
700 1 |a Wang, Fan  |e verfasserin  |4 aut 
700 1 |a Huang, Yan  |e verfasserin  |4 aut 
700 1 |a Shen, Yi-Dong  |e verfasserin  |4 aut 
700 1 |a Wang, Liang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 20., Seite 3622-3633  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:32  |g year:2023  |g day:20  |g pages:3622-3633 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3286710  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 20  |h 3622-3633