DDCNet : Deep Dilated Convolutional Neural Network for Dense Prediction

Dense pixel matching problems such as optical flow and disparity estimation are among the most challenging tasks in computer vision. Recently, several deep learning methods designed for these problems have been successful. A sufficiently larger effective receptive field (ERF) and a higher resolution...

Description complète

Détails bibliographiques
Publié dans:Neurocomputing. - 1998. - 523(2023) vom: 28. Feb., Seite 116-129
Auteur principal: Salehi, Ali (Auteur)
Autres auteurs: Balasubramanian, Madhusudhanan
Format: Article en ligne
Langue:English
Publié: 2023
Accès à la collection:Neurocomputing
Sujets:Journal Article Dense prediction compact network dilated convolution gridding artifact network receptive field optical flow estimation
LEADER 01000caa a22002652c 4500
001 NLM358339235
003 DE-627
005 20250304222157.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.neucom.2022.12.024  |2 doi 
028 5 2 |a pubmed25n1194.xml 
035 |a (DE-627)NLM358339235 
035 |a (NLM)37332394 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Salehi, Ali  |e verfasserin  |4 aut 
245 1 0 |a DDCNet  |b Deep Dilated Convolutional Neural Network for Dense Prediction 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Dense pixel matching problems such as optical flow and disparity estimation are among the most challenging tasks in computer vision. Recently, several deep learning methods designed for these problems have been successful. A sufficiently larger effective receptive field (ERF) and a higher resolution of spatial features within a network are essential for providing higher-resolution dense estimates. In this work, we present a systemic approach to design network architectures that can provide a larger receptive field while maintaining a higher spatial feature resolution. To achieve a larger ERF, we utilized dilated convolutional layers. By aggressively increasing dilation rates in the deeper layers, we were able to achieve a sufficiently larger ERF with a significantly fewer number of trainable parameters. We used optical flow estimation problem as the primary benchmark to illustrate our network design strategy. The benchmark results (Sintel, KITTI, and Middlebury) indicate that our compact networks can achieve comparable performance in the class of lightweight networks 
650 4 |a Journal Article 
650 4 |a Dense prediction 
650 4 |a compact network 
650 4 |a dilated convolution 
650 4 |a gridding artifact 
650 4 |a network receptive field 
650 4 |a optical flow estimation 
700 1 |a Balasubramanian, Madhusudhanan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Neurocomputing  |d 1998  |g 523(2023) vom: 28. Feb., Seite 116-129  |w (DE-627)NLM098202456  |x 0925-2312  |7 nnas 
773 1 8 |g volume:523  |g year:2023  |g day:28  |g month:02  |g pages:116-129 
856 4 0 |u http://dx.doi.org/10.1016/j.neucom.2022.12.024  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 523  |j 2023  |b 28  |c 02  |h 116-129