|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM358293774 |
003 |
DE-627 |
005 |
20250304221453.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202300876
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1193.xml
|
035 |
|
|
|a (DE-627)NLM358293774
|
035 |
|
|
|a (NLM)37327808
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Zhao, Weiqiang
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Neuron-Inspired Sticky Artificial Spider Silk for Signal Transmission
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 14.08.2023
|
500 |
|
|
|a Date Revised 14.08.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2023 Wiley-VCH GmbH.
|
520 |
|
|
|a Neurons exhibit excellent signal transmission capacity, which inspire artificial neuron materials for applications in the field of wearable electronics and soft robotics. In addition, the neuron fibers exhibit good mechanical robustness by sticking to the organs, which currently has rarely been studied. Here, a sticky artificial spider silk is developed by employing a proton donor-acceptor (PrDA) hydrogel fiber for application as artificial neuron fibers. Tuning the molecular electrostatic interactions by modulating the sequences of proton donors and acceptors, enables combination of excellent mechanical properties, stickiness, and ion conductivity. In addition, the PrDA hydrogel exhibits high spinning capacity for a wide range of donor-acceptor combinations. The PrDA artificial spider silk would shed light on the design of new generation of artificial neuron materials, bio-electrodes, and artificial synapses
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a bioelectrodes
|
650 |
|
4 |
|a biomimetic
|
650 |
|
4 |
|a electrostatic interactions
|
650 |
|
4 |
|a functional fibers
|
650 |
|
4 |
|a smart materials
|
650 |
|
7 |
|a Silk
|2 NLM
|
650 |
|
7 |
|a Protons
|2 NLM
|
650 |
|
7 |
|a Hydrogels
|2 NLM
|
700 |
1 |
|
|a Shao, Fei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sun, Fuqin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Su, Zihao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Shiyong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Ting
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhu, Meifang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Zunfeng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhou, Xiang
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 35(2023), 32 vom: 22. Aug., Seite e2300876
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnas
|
773 |
1 |
8 |
|g volume:35
|g year:2023
|g number:32
|g day:22
|g month:08
|g pages:e2300876
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202300876
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 35
|j 2023
|e 32
|b 22
|c 08
|h e2300876
|