|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM358286387 |
003 |
DE-627 |
005 |
20231226074422.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202302625
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1194.xml
|
035 |
|
|
|a (DE-627)NLM358286387
|
035 |
|
|
|a (NLM)37327064
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Balamurugan, Jayaraman
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Electrocatalysts for Zinc-Air Batteries Featuring Single Molybdenum Atoms in a Nitrogen-Doped Carbon Framework
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 01.09.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2023 Wiley-VCH GmbH.
|
520 |
|
|
|a Bifunctional catalysts can facilitate two different electrochemical reactions with conflicting characteristics. Here, a highly reversible bifunctional electrocatalyst for rechargeable zinc-air batteries (ZABs) is reported featuring a "core-shell structure" in which N-doped graphene sheets wrap around vanadium molybdenum oxynitride nanoparticles. Single Mo atoms are released from the particle core during synthesis and anchored to electronegative N-dopant species in the graphitic shell. The resultant Mo single-atom catalysts excel as active oxygen evolution reaction (OER) sites in pyrrolic-N and as active oxygen reduction reaction (ORR) sites in pyridinic-N environments. ZABs with such bifunctional and multicomponent single-atom catalysts deliver high power density (≈376.4 mW cm-2 ) and long cycle life of over 630 h, outperforming noble-metal-based benchmarks. Flexible ZABs that can tolerate a wide range of temperatures (-20 to 80 °C) under severe mechanical deformation are also demonstrated
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a core-shell interface
|
650 |
|
4 |
|a interfacial engineering
|
650 |
|
4 |
|a oxygen evolution reaction
|
650 |
|
4 |
|a oxygen reduction reaction
|
650 |
|
4 |
|a single-atom catalysts
|
650 |
|
4 |
|a zinc-air batteries
|
700 |
1 |
|
|a Austeria, P Muthu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kim, Jun Beom
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jeong, Eun-Suk
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Huang, Hsin-Hui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kim, Do Hwan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Koratkar, Nikhil
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kim, Sang Ouk
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 35(2023), 35 vom: 01. Sept., Seite e2302625
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:35
|g year:2023
|g number:35
|g day:01
|g month:09
|g pages:e2302625
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202302625
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 35
|j 2023
|e 35
|b 01
|c 09
|h e2302625
|