|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM35824207X |
003 |
DE-627 |
005 |
20231226074327.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1111/nph.19018
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1194.xml
|
035 |
|
|
|a (DE-627)NLM35824207X
|
035 |
|
|
|a (NLM)37322620
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Chae, Ho Byoung
|e verfasserin
|4 aut
|
245 |
1 |
4 |
|a The physiological role of thiol-based redox sensors in plant defense signaling
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 14.07.2023
|
500 |
|
|
|a Date Revised 18.07.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2023 The Authors. New Phytologist © 2023 New Phytologist Foundation.
|
520 |
|
|
|a Plants have developed multilayered defense strategies to adapt and acclimate to the kaleidoscopic environmental changes that rapidly produce reactive oxygen species (ROS) and induce redox changes. Thiol-based redox sensors containing the redox-sensitive cysteine residues act as the central machinery in plant defense signaling. Here, we review recent research on thiol-based redox sensors in plants, which perceive the changes in intracellular H2 O2 levels and activate specific downstream defense signaling. The review mainly focuses on the molecular mechanism of how the thiol sensors recognize internal/external stresses and respond to them by demonstrating several instances, such as cold-, drought-, salinity-, and pathogen-resistant signaling pathways. Also, we introduce another novel complex system of thiol-based redox sensors operating through the liquid-liquid phase separation
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Review
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a Arabidopsis thaliana
|
650 |
|
4 |
|a active thiol residue
|
650 |
|
4 |
|a defense signaling
|
650 |
|
4 |
|a post-translational modification
|
650 |
|
4 |
|a reactive oxygen species (ROS)
|
650 |
|
4 |
|a thiol-based redox sensor
|
650 |
|
7 |
|a Sulfhydryl Compounds
|2 NLM
|
650 |
|
7 |
|a Reactive Oxygen Species
|2 NLM
|
700 |
1 |
|
|a Bae, Su Bin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Paeng, Seol Ki
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wi, Seong Dong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Phan, Kieu Anh Thi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kim, Min Gab
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kim, Woe-Yeon
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yun, Dae-Jin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lee, Sang Yeol
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t The New phytologist
|d 1979
|g 239(2023), 4 vom: 03. Aug., Seite 1203-1211
|w (DE-627)NLM09818248X
|x 1469-8137
|7 nnns
|
773 |
1 |
8 |
|g volume:239
|g year:2023
|g number:4
|g day:03
|g month:08
|g pages:1203-1211
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1111/nph.19018
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 239
|j 2023
|e 4
|b 03
|c 08
|h 1203-1211
|