Pose Guided Person Image Generation Via Dual-Task Correlation and Affinity Learning

Pose Guided Person Image Generation (PGPIG) is the task of transforming a person's image from the source pose to a target pose. Existing PGPIG methods often tend to learn an end-to-end transformation between the source image and the target image, but do not seriously consider two issues: 1) the...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 30(2024), 8 vom: 09. Juli, Seite 5111-5128
1. Verfasser: Zhang, Pengze (VerfasserIn)
Weitere Verfasser: Yang, Lingxiao, Xie, Xiaohua, Lai, Jianhuang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM358205638
003 DE-627
005 20240703234229.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2023.3286394  |2 doi 
028 5 2 |a pubmed24n1459.xml 
035 |a (DE-627)NLM358205638 
035 |a (NLM)37318966 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Pengze  |e verfasserin  |4 aut 
245 1 0 |a Pose Guided Person Image Generation Via Dual-Task Correlation and Affinity Learning 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 03.07.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Pose Guided Person Image Generation (PGPIG) is the task of transforming a person's image from the source pose to a target pose. Existing PGPIG methods often tend to learn an end-to-end transformation between the source image and the target image, but do not seriously consider two issues: 1) the PGPIG is an ill-posed problem, and 2) the texture mapping requires effective supervision. In order to alleviate these two challenges, we propose a novel method by incorporating Dual-task Pose Transformer Network and Texture Affinity learning mechanism (DPTN-TA). To assist the ill-posed source-to-target task learning, DPTN-TA introduces an auxiliary task, i.e., source-to-source task, by a Siamese structure and further explores the dual-task correlation. Specifically, the correlation is built by the proposed Pose Transformer Module (PTM), which can adaptively capture the fine-grained mapping between sources and targets and can promote the source texture transmission to enhance the details of the generated images. Moreover, we propose a novel texture affinity loss to better supervise the learning of texture mapping. In this way, the network is able to learn complex spatial transformations effectively. Extensive experiments show that our DPTN-TA can produce perceptually realistic person images under significant pose changes. Furthermore, our DPTN-TA is not limited to processing human bodies but can be flexibly extended to view synthesis of other objects, i.e., faces and chairs, outperforming the state-of-the-arts in terms of both LPIPS and FID. Our code is available at: https://github.com/PangzeCheung/Dual-task-Pose-Transformer-Network 
650 4 |a Journal Article 
700 1 |a Yang, Lingxiao  |e verfasserin  |4 aut 
700 1 |a Xie, Xiaohua  |e verfasserin  |4 aut 
700 1 |a Lai, Jianhuang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 30(2024), 8 vom: 09. Juli, Seite 5111-5128  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:30  |g year:2024  |g number:8  |g day:09  |g month:07  |g pages:5111-5128 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2023.3286394  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2024  |e 8  |b 09  |c 07  |h 5111-5128