Sentiment analysis of COVID-19 cases in Greece using Twitter data

© 2023 The Author(s).

Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications. - 1999. - 230(2023) vom: 15. Nov., Seite 120577
1. Verfasser: Samaras, Loukas (VerfasserIn)
Weitere Verfasser: García-Barriocanal, Elena, Sicilia, Miguel-Angel
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Expert systems with applications
Schlagworte:Journal Article Pandemic Public health Sentiment analysis Twitter Web data
Beschreibung
Zusammenfassung:© 2023 The Author(s).
Background: Syndromic surveillance with the use of Internet data has been used to track and forecast epidemics for the last two decades, using different sources from social media to search engine records. More recently, studies have addressed how the World Wide Web could be used as a valuable source for analysing the reactions of the public to outbreaks and revealing emotions and sentiment impact from certain events, notably that of pandemics
Objective: The objective of this research is to evaluate the capability of Twitter messages (tweets) in estimating the sentiment impact of COVID-19 cases in Greece in real time as related to cases
Methods: 153,528 tweets were gathered from 18,730 Twitter users totalling 2,840,024 words for exactly one year and were examined towards two sentimental lexicons: one in English language translated into Greek (using the Vader library) and one in Greek. We then used the specific sentimental ranking included in these lexicons to track i) the positive and negative impact of COVID-19 and ii) six types of sentiments: Surprise, Disgust, Anger, Happiness, Fear and Sadness and iii) the correlations between real cases of COVID-19 and sentiments and correlations between sentiments and the volume of data
Results: Surprise (25.32%) mainly and secondly Disgust (19.88%) were found to be the prevailing sentiments of COVID-19. The correlation coefficient (R2) for the Vader lexicon is -0.07454 related to cases and -0.,70668 to the tweets, while the other lexicon had 0.167387 and -0.93095 respectively, all measured at significance level of p < 0.01. Evidence shows that the sentiment does not correlate with the spread of COVID-19, possibly since the interest in COVID-19 declined after a certain time
Beschreibung:Date Revised 19.09.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:0957-4174
DOI:10.1016/j.eswa.2023.120577