Multiplex Transformed Tensor Decomposition for Multidimensional Image Recovery

Low-rank tensor completion aims to recover the missing entries of multi-way data, which has become popular and vital in many fields such as signal processing and computer vision. It varies with different tensor decomposition frameworks. Compared with matrix SVD, recently emerging transform t-SVD can...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 14., Seite 3397-3412
1. Verfasser: Feng, Lanlan (VerfasserIn)
Weitere Verfasser: Zhu, Ce, Long, Zhen, Liu, Jiani, Liu, Yipeng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM358165415
003 DE-627
005 20231226074149.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3284673  |2 doi 
028 5 2 |a pubmed24n1193.xml 
035 |a (DE-627)NLM358165415 
035 |a (NLM)37314904 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Feng, Lanlan  |e verfasserin  |4 aut 
245 1 0 |a Multiplex Transformed Tensor Decomposition for Multidimensional Image Recovery 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 20.06.2023 
500 |a Date Revised 20.06.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Low-rank tensor completion aims to recover the missing entries of multi-way data, which has become popular and vital in many fields such as signal processing and computer vision. It varies with different tensor decomposition frameworks. Compared with matrix SVD, recently emerging transform t-SVD can better characterize the low-rank structure of order-3 data. However, it suffers from rotation sensitivity, and dimensional limitation (i.e., only effective for order-3 tensors). To alleviate these deficiencies, we develop a novel multiplex transformed tensor decomposition (MTTD) framework, which can characterize the global low-rank structure along all modes for any order- N tensor. Based on MTTD, we propose a related multi-dimensional square model for low-rank tensor completion. Besides, a total variation term is also introduced to utilize the local piecewise smoothness of the tensor data. The classic alternating direction method of multipliers is used to solve the convex optimization problems. For performance testing, we choose three linear invertible transforms including FFT, DCT, and a group of unitary transform matrices for our proposed methods. The simulated and real-data experiments demonstrate the superior recovery accuracy and computational efficiency of our method compared with state-of-the-art ones 
650 4 |a Journal Article 
700 1 |a Zhu, Ce  |e verfasserin  |4 aut 
700 1 |a Long, Zhen  |e verfasserin  |4 aut 
700 1 |a Liu, Jiani  |e verfasserin  |4 aut 
700 1 |a Liu, Yipeng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 14., Seite 3397-3412  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:32  |g year:2023  |g day:14  |g pages:3397-3412 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3284673  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 14  |h 3397-3412