Near-Field Microwave Scattering Formulation by A Deep Learning Method

A deep learning method is applied to modelling electromagnetic (EM) scattering for microwave breast imaging (MBI). The neural network (NN) accepts 2D dielectric breast maps at 3 GHz and produces scattered-field data on an antenna array composed of 24 transmitters and 24 receivers. The NN was trained...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on microwave theory and techniques. - 1998. - 70(2022), 11 vom: 09. Nov., Seite 5077-5084
1. Verfasser: Shao, Wenyi (VerfasserIn)
Weitere Verfasser: Zhou, Beibei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on microwave theory and techniques
Schlagworte:Journal Article Computational electromagnetics convolutional neural network deep learning microwave imaging
LEADER 01000caa a22002652 4500
001 NLM35814776X
003 DE-627
005 20240919232130.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/tmtt.2022.3184331  |2 doi 
028 5 2 |a pubmed24n1539.xml 
035 |a (DE-627)NLM35814776X 
035 |a (NLM)37313124 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shao, Wenyi  |e verfasserin  |4 aut 
245 1 0 |a Near-Field Microwave Scattering Formulation by A Deep Learning Method 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 19.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a A deep learning method is applied to modelling electromagnetic (EM) scattering for microwave breast imaging (MBI). The neural network (NN) accepts 2D dielectric breast maps at 3 GHz and produces scattered-field data on an antenna array composed of 24 transmitters and 24 receivers. The NN was trained by 18,000 synthetic digital breast phantoms generated by generative adversarial network (GAN), and the scattered-field data pre-calculated by method of moments (MOM). Validation was performed by comparing the 2,000 NN-produced datasets isolated from the training data with the data computed by MOM. Finally, data generated by NN and MOM were used for image reconstruction. The reconstruction demonstrated that errors caused by NN would not significantly affect the image result. But the computational speed of NN was nearly 104 times faster than the MOM, indicating that deep learning has the potential to be considered as a fast tool for EM scattering computation 
650 4 |a Journal Article 
650 4 |a Computational electromagnetics 
650 4 |a convolutional neural network 
650 4 |a deep learning 
650 4 |a microwave imaging 
700 1 |a Zhou, Beibei  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on microwave theory and techniques  |d 1998  |g 70(2022), 11 vom: 09. Nov., Seite 5077-5084  |w (DE-627)NLM098148141  |x 0018-9480  |7 nnns 
773 1 8 |g volume:70  |g year:2022  |g number:11  |g day:09  |g month:11  |g pages:5077-5084 
856 4 0 |u http://dx.doi.org/10.1109/tmtt.2022.3184331  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 70  |j 2022  |e 11  |b 09  |c 11  |h 5077-5084