First Report of Fusarium Root Rot of Tobacco Caused by Fusarium fujikuroi in Guangdong Province, China

From March to June 2022, Fusarium tobacco root rot broke out in Shaoguan Guangdong Province, China, affecting approximately 15% of tobacco production fields, with an incidence of 24% to 66%. In the early stage, the lower leaves showed chlorosis, and the roots became black. In the later stage, the lea...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Plant disease. - 1997. - (2023) vom: 13. Juni
1. Verfasser: Shen, Huifang (VerfasserIn)
Weitere Verfasser: Deng, Haibin, Yang, Qiyun, Pu, Xiaoming, Zhang, Jingxin, Sun, Dayuan, Liu, Pingping, Lin, B R
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Plant disease
Schlagworte:Journal Article Fusarium fujikuroi Fusarium root rot tobacco
Beschreibung
Zusammenfassung:From March to June 2022, Fusarium tobacco root rot broke out in Shaoguan Guangdong Province, China, affecting approximately 15% of tobacco production fields, with an incidence of 24% to 66%. In the early stage, the lower leaves showed chlorosis, and the roots became black. In the later stage, the leaves became browned and withered, the root cortices were broken and shed, and only a small number of roots were left. Eventually, the entire plant died. Six diseased plant samples (cv. yueyan 97) from Shaoguan (113.8°E, 24.8°N) were collected as test materials. The diseased root tissues (4×4 mm) were surface-sterilized using 75% ethanol for 30 s and 2% NaOCl for 10 min, rinsed 3 times with sterile water and incubated for 4 days on potato dextrose agar (PDA) medium at 25 °C. Fungal colonies were subcultured on fresh PDA, grown for the next 5 d and purified by single-spore separation. Eleven isolates with similar morphological characteristics were obtained. Their colonies were white and fluffy, and the bottoms of the culture plates were pale pink after 5 days of incubation. The macroconidia were slender, slightly curved and measured 18.54~45.85 µm×2.35~3.84 µm (n=50), with 3 to 5 septa. The microconidia were oval or spindle shaped, with one to two cells, and measured 5.56~16.76 µm×2.32~3.86 µm (n=50). Chlamydospores were absent. Such characteristics are typical of the genus Fusarium (Booth C, 1971). The SGF36 isolate was chosen for further molecular analysis. The TEF-1α and β-tubulin genes (Pedrozo et al.2015) were amplified. Based on a phylogenetic tree (neighbor-joining method and 1,000 bootstrap values) obtained using multiplex alignments of concatenations of these two genes from 18 Fusarium species, SGF36 was grouped into a clade with Fusarium fujikuroi strain 12-1 (MK443268.1/MK443267.1) and F. fujikuroi isolate BJ-1 (MH263736.1/MH263737.1). To further identity the isolate, five additional gene sequences (rDNA-ITS (OP862807.1), RPB2, histone 3, calmodulin, and mitochondrial small subunit) (Pedrozo et al.2015), were subjected to BLAST searches in GenBank, and the results indicated that they were most similar to F. fujikuroi sequences, with sequence identities greater than 99%. The phylogenetic tree obtained using six genes except mitochondrial small subunit gene showed that SGF36 was grouped together with four F. fujikuroi strains to form a single clade. Pathogenicity was determined by the inoculation of wheat grains with fungi in potted tobacco plants. The SGF36 isolate was inoculated onto sterilized wheat grains, which were then incubated at 25 °C for 7 d. Thirty wheat grains with fungi were added to 200 g of sterilized soil, which was then mixed well and placed into pots. One six-leaf-stage tobacco seedling (cv. yueyan 97) was planted in each pot. A total of 20 tobacco seedlings were treated. Another 20 control seedlings were treated with wheat grains without fungi. All seedlings were placed in a greenhouse at 25 °C with 90% relative humidity. After 5 d, the leaves of all inoculated seedlings showed chlorosis, and the roots became discolored. No symptoms were observed in the controls. The fungus was reisolated from symptomatic roots and confirmed to be F. fujikuroi based on the TEF-1α gene sequence. No F. fujikuroi isolates were recovered from control plants. F. fujikuroi was previously reported to be associated with rice bakanae disease (Ram et al., 2018), soybean root rot (Zhao et al., 2020) and cotton seedling wilt (Zhu et al., 2020). To our knowledge, this is the first report of F. fujikuroi causing root wilt on tobacco in China. The identification of the pathogen may help to establish appropriate measures for controlling this disease
Beschreibung:Date Revised 13.06.2023
published: Print-Electronic
Citation Status Publisher
ISSN:0191-2917
DOI:10.1094/PDIS-04-23-0658-PDN