Towards Better Modeling With Missing Data : A Contrastive Learning-Based Visual Analytics Perspective

Missing data can pose a challenge for machine learning (ML) modeling. To address this, current approaches are categorized into feature imputation and label prediction and are primarily focused on handling missing data to enhance ML performance. These approaches rely on the observed data to estimate...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on visualization and computer graphics. - 1996. - 30(2024), 8 vom: 13. Aug., Seite 5129-5146
Auteur principal: Xie, Laixin (Auteur)
Autres auteurs: Ouyang, Yang, Chen, Longfei, Wu, Ziming, Li, Quan
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:IEEE transactions on visualization and computer graphics
Sujets:Journal Article