Facial Action Unit Detection via Adaptive Attention and Relation

Facial action unit (AU) detection is challenging due to the difficulty in capturing correlated information from subtle and dynamic AUs. Existing methods often resort to the localization of correlated regions of AUs, in which predefining local AU attentions by correlated facial landmarks often discar...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 01., Seite 3354-3366
1. Verfasser: Shao, Zhiwen (VerfasserIn)
Weitere Verfasser: Zhou, Yong, Cai, Jianfei, Zhu, Hancheng, Yao, Rui
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM35812493X
003 DE-627
005 20231226074059.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3277794  |2 doi 
028 5 2 |a pubmed24n1193.xml 
035 |a (DE-627)NLM35812493X 
035 |a (NLM)37310816 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shao, Zhiwen  |e verfasserin  |4 aut 
245 1 0 |a Facial Action Unit Detection via Adaptive Attention and Relation 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 21.06.2023 
500 |a Date Revised 21.06.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Facial action unit (AU) detection is challenging due to the difficulty in capturing correlated information from subtle and dynamic AUs. Existing methods often resort to the localization of correlated regions of AUs, in which predefining local AU attentions by correlated facial landmarks often discards essential parts, or learning global attention maps often contains irrelevant areas. Furthermore, existing relational reasoning methods often employ common patterns for all AUs while ignoring the specific way of each AU. To tackle these limitations, we propose a novel adaptive attention and relation (AAR) framework for facial AU detection. Specifically, we propose an adaptive attention regression network to regress the global attention map of each AU under the constraint of attention predefinition and the guidance of AU detection, which is beneficial for capturing both specified dependencies by landmarks in strongly correlated regions and facial globally distributed dependencies in weakly correlated regions. Moreover, considering the diversity and dynamics of AUs, we propose an adaptive spatio-temporal graph convolutional network to simultaneously reason the independent pattern of each AU, the inter-dependencies among AUs, as well as the temporal dependencies. Extensive experiments show that our approach (i) achieves competitive performance on challenging benchmarks including BP4D, DISFA, and GFT in constrained scenarios and Aff-Wild2 in unconstrained scenarios, and (ii) can precisely learn the regional correlation distribution of each AU 
650 4 |a Journal Article 
700 1 |a Zhou, Yong  |e verfasserin  |4 aut 
700 1 |a Cai, Jianfei  |e verfasserin  |4 aut 
700 1 |a Zhu, Hancheng  |e verfasserin  |4 aut 
700 1 |a Yao, Rui  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 01., Seite 3354-3366  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:32  |g year:2023  |g day:01  |g pages:3354-3366 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3277794  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 01  |h 3354-3366