Extending the elemental defence hypothesis in the light of plant chemodiversity

© 2023 The Authors. New Phytologist © 2023 New Phytologist Foundation.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 239(2023), 5 vom: 17. Sept., Seite 1545-1555
1. Verfasser: Putra, Rocky (VerfasserIn)
Weitere Verfasser: Müller, Caroline
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Brassicaceae joint effects hypothesis metal/metalloid hyperaccumulator phytochemical plant-antagonist interactions silicon trade-off hypothesis Metals
Beschreibung
Zusammenfassung:© 2023 The Authors. New Phytologist © 2023 New Phytologist Foundation.
Some plant species tolerate and accumulate high levels of metals or metalloids in their tissues. The elemental defence hypothesis posits that metal(loid) hyperaccumulation by these plants can serve as protection against antagonists. Numerous studies support this hypothesis. In addition, as other plant species, hyperaccumulators synthesise specialised metabolites that can act as organic defences. In principle, the composition and concentration of plant-specialised metabolites vary pronouncedly not only among species, but also within species and within individuals. This variation is called chemodiversity. Surprisingly, the role of chemodiversity has received little attention in elemental defence. Thus, we advocate that the concept of the elemental defence hypothesis should be extended and linked to the multifunctionality of plant chemodiversity to better understand the eco-evolutionary dynamics and maintenance of metal(loid) hyperaccumulation. Comprehensive literature studies revealed that both metal(loid)s and specialised metabolites acting as defences are highly diverse in some hyperaccumulators and the biosynthetic pathways of these two types of defences are partly intertwined. Several edaphic-, population-, temporal- and spatial-related factors were found to influence metal(loid) diversity, which should be considered in the elemental defence hypothesis. We thus present a novel synthesis and outlook to extend the elemental defence hypothesis in the light of chemodiversity
Beschreibung:Date Completed 03.08.2023
Date Revised 03.08.2023
published: Print-Electronic
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/nph.19071