An Exciplex-Based Light-Emission Pathway for Solution-State Electrochemiluminescent Devices

© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 38 vom: 30. Sept., Seite e2302544
1. Verfasser: Moon, Chang-Ki (VerfasserIn)
Weitere Verfasser: Butscher, Julian F, Gather, Malte C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article AC operation TiO2 electrodes electrochemiluminescence electrochemiluminescent devices exciplex organic semiconductors photonic devices
LEADER 01000caa a22002652c 4500
001 NLM35809836X
003 DE-627
005 20250304214823.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202302544  |2 doi 
028 5 2 |a pubmed25n1193.xml 
035 |a (DE-627)NLM35809836X 
035 |a (NLM)37308129 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Moon, Chang-Ki  |e verfasserin  |4 aut 
245 1 3 |a An Exciplex-Based Light-Emission Pathway for Solution-State Electrochemiluminescent Devices 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 21.09.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH. 
520 |a Electrochemiluminescence (ECL) allows the design of unique light-emitting devices that use organic semiconductors in a liquid or gel state, which allows for simpler and more sustainable device fabrication and facilitates unconventional device form-factors. Compared to solid-state organic LEDs, ECL devices (ECLDs) have attracted less attention due to their currently much lower performance. ECLD operation is typically based on an annihilation pathway that involves electron transfer between reduced and oxidized luminophore species; the intermediate radical ions produced during annihilation dramatically reduce device stability. Here, the effects of radical ions are mitigated by an exciplex formation pathway and a remarkable improvement in luminance, luminous efficacy, and operational lifetime is demonstrated. Electron donor and acceptor molecules are dissolved at high concentrations and recombined as an exciplex upon their oxidization/reduction. The exciplex then transfers its energy to a nearby dye, allowing the dye to emit light without undergoing oxidation/reduction. Furthermore, the application of a mesoporous TiO2 electrode increases the contact area and hence the number of molecules participating in ECL , thereby obtaining devices with a very high luminance of 3790 cd m-2 and a 30-fold improved operational lifetime. This study paves the way for the development of ECLDs into highly versatile light sources 
650 4 |a Journal Article 
650 4 |a AC operation 
650 4 |a TiO2 electrodes 
650 4 |a electrochemiluminescence 
650 4 |a electrochemiluminescent devices 
650 4 |a exciplex 
650 4 |a organic semiconductors 
650 4 |a photonic devices 
700 1 |a Butscher, Julian F  |e verfasserin  |4 aut 
700 1 |a Gather, Malte C  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 35(2023), 38 vom: 30. Sept., Seite e2302544  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g volume:35  |g year:2023  |g number:38  |g day:30  |g month:09  |g pages:e2302544 
856 4 0 |u http://dx.doi.org/10.1002/adma.202302544  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2023  |e 38  |b 30  |c 09  |h e2302544