Meta-Learning-Based Degradation Representation for Blind Super-Resolution

Blind image super-resolution (blind SR) aims to generate high-resolution (HR) images from low-resolution (LR) input images with unknown degradations. To enhance the performance of SR, the majority of blind SR methods introduce an explicit degradation estimator, which helps the SR model adjust to unk...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 12., Seite 3383-3396
1. Verfasser: Xia, Bin (VerfasserIn)
Weitere Verfasser: Tian, Yapeng, Zhang, Yulun, Hang, Yucheng, Yang, Wenming, Liao, Qingmin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM358089018
003 DE-627
005 20231226074011.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3283922  |2 doi 
028 5 2 |a pubmed24n1193.xml 
035 |a (DE-627)NLM358089018 
035 |a (NLM)37307185 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xia, Bin  |e verfasserin  |4 aut 
245 1 0 |a Meta-Learning-Based Degradation Representation for Blind Super-Resolution 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 20.06.2023 
500 |a Date Revised 20.06.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Blind image super-resolution (blind SR) aims to generate high-resolution (HR) images from low-resolution (LR) input images with unknown degradations. To enhance the performance of SR, the majority of blind SR methods introduce an explicit degradation estimator, which helps the SR model adjust to unknown degradation scenarios. Unfortunately, it is impractical to provide concrete labels for the multiple combinations of degradations (e. g., blurring, noise, or JPEG compression) to guide the training of the degradation estimator. Moreover, the special designs for certain degradations hinder the models from being generalized for dealing with other degradations. Thus, it is imperative to devise an implicit degradation estimator that can extract discriminative degradation representations for all types of degradations without requiring the supervision of degradation ground-truth. To this end, we propose a Meta-Learning based Region Degradation Aware SR Network (MRDA), including Meta-Learning Network (MLN), Degradation Extraction Network (DEN), and Region Degradation Aware SR Network (RDAN). To handle the lack of ground-truth degradation, we use the MLN to rapidly adapt to the specific complex degradation after several iterations and extract implicit degradation information. Subsequently, a teacher network MRDAT is designed to further utilize the degradation information extracted by MLN for SR. However, MLN requires iterating on paired LR and HR images, which is unavailable in the inference phase. Therefore, we adopt knowledge distillation (KD) to make the student network learn to directly extract the same implicit degradation representation (IDR) as the teacher from LR images. Furthermore, we introduce an RDAN module that is capable of discerning regional degradations, allowing IDR to adaptively influence various texture patterns. Extensive experiments under classic and real-world degradation settings show that MRDA achieves SOTA performance and can generalize to various degradation processes 
650 4 |a Journal Article 
700 1 |a Tian, Yapeng  |e verfasserin  |4 aut 
700 1 |a Zhang, Yulun  |e verfasserin  |4 aut 
700 1 |a Hang, Yucheng  |e verfasserin  |4 aut 
700 1 |a Yang, Wenming  |e verfasserin  |4 aut 
700 1 |a Liao, Qingmin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 12., Seite 3383-3396  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:32  |g year:2023  |g day:12  |g pages:3383-3396 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3283922  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 12  |h 3383-3396