|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM357968271 |
003 |
DE-627 |
005 |
20250304212900.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202302511
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1192.xml
|
035 |
|
|
|a (DE-627)NLM357968271
|
035 |
|
|
|a (NLM)37295070
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Zhang, Feng
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Meta-Aerogel Ion Motor for Nanofluid Osmotic Energy Harvesting
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 21.09.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2023 Wiley-VCH GmbH.
|
520 |
|
|
|a Osmotic power, also known as "blue energy", is a vast, sustainable, and clean energy source that can be directly converted into electricity by nanofluidic membranes. However, the key technological bottleneck for large-scale osmotic electricity is that macroscopic-scale bulky membrane cannot synergistically satisfy the demands of high power density and low resistance without sacrificing scalability and mechanical robustness. Here, inspired by the anatomy and working principle of electric eels, which harness osmotic energy through embedded neuron-mediated fibril nanochannels with nanoconfined transport dynamics. Fibrous nanofluidic meta-aerogel ion motors, 3D-assembled from nanofluidic cable fibers with actuatable stimulation/transport "ion highways" are engineered. The meta-aerogel exhibits the integrated coupling effect of boosted ion propulsion and surface-charge-dominated selective ion transport. Driven by osmosis, the meta-aerogel ion motor can produce an unprecedented output power density of up to 30.7 W m-2 under a 50-fold salinity gradient. Advancing ultra-selective ion transport in nanofluidic meta-aerogels may provide a promising roadmap for blue energy harvesting
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a actuatable ion-highways
|
650 |
|
4 |
|a electrospinning
|
650 |
|
4 |
|a fibrous aerogels
|
650 |
|
4 |
|a nanofibers
|
650 |
|
4 |
|a nanofluidic cable fibers
|
650 |
|
4 |
|a osmotic energy
|
700 |
1 |
|
|a Yu, Jianyong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Si, Yang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ding, Bin
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 35(2023), 38 vom: 01. Sept., Seite e2302511
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnas
|
773 |
1 |
8 |
|g volume:35
|g year:2023
|g number:38
|g day:01
|g month:09
|g pages:e2302511
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202302511
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 35
|j 2023
|e 38
|b 01
|c 09
|h e2302511
|