POVNet : Image-Based Virtual Try-On Through Accurate Warping and Residual

Virtual dressing room applications help online shoppers visualize outfits. Such a system, to be commercially viable, must satisfy a set of performance criteria. The system must produce high quality images that faithfully preserve garment properties, allow users to mix and match garments of various t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 10 vom: 09. Okt., Seite 12222-12235
1. Verfasser: Li, Kedan (VerfasserIn)
Weitere Verfasser: Zhang, Jeffrey, Forsyth, David
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM357964098
003 DE-627
005 20231226073729.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3283302  |2 doi 
028 5 2 |a pubmed24n1193.xml 
035 |a (DE-627)NLM357964098 
035 |a (NLM)37294645 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Kedan  |e verfasserin  |4 aut 
245 1 0 |a POVNet  |b Image-Based Virtual Try-On Through Accurate Warping and Residual 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.09.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Virtual dressing room applications help online shoppers visualize outfits. Such a system, to be commercially viable, must satisfy a set of performance criteria. The system must produce high quality images that faithfully preserve garment properties, allow users to mix and match garments of various types and support human models varying in skin tone, hair color, body shape, and so on. This paper describes POVNet, a framework that meets all these requirements (except body shapes variations). Our system uses warping methods together with residual data to preserve garment texture at fine scales and high resolution. Our warping procedure adapts to a wide range of garments and allows swapping in and out of individual garments. A learned rendering procedure using an adversarial loss ensures that fine shading, etc. is accurately reflected. A distance transform representation ensures that hems, cuffs, stripes, and so on are correctly placed. We demonstrate improvements in garment rendering over state of the art resulting from these procedures. We demonstrate that the framework is scalable, responds in real-time, and works robustly with a variety of garment categories. Finally, we demonstrate that using this system as a virtual dressing room interface for fashion e-commerce websites has significantly boosted user-engagement rates 
650 4 |a Journal Article 
700 1 |a Zhang, Jeffrey  |e verfasserin  |4 aut 
700 1 |a Forsyth, David  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 10 vom: 09. Okt., Seite 12222-12235  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:10  |g day:09  |g month:10  |g pages:12222-12235 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3283302  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 10  |b 09  |c 10  |h 12222-12235