Light-Induced Metastable Hidden Skyrmion Phase in the Mott Insulator Cu2 OSeO3

© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 33 vom: 07. Aug., Seite e2304197
1. Verfasser: Truc, Benoit (VerfasserIn)
Weitere Verfasser: Sapozhnik, Alexey A, Tengdin, Phoebe, Viñas Boström, Emil, Schönenberger, Thomas, Gargiulo, Simone, Madan, Ivan, LaGrange, Thomas, Magrez, Arnaud, Verdozzi, Claudio, Rubio, Angel, Rønnow, Henrik M, Carbone, Fabrizio
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article femtosecond laser pulses magnetoelastic effect multiferroic materials skyrmions spintronics topological materials
Beschreibung
Zusammenfassung:© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.
The discovery of a novel long-lived metastable skyrmion phase in the multiferroic insulator Cu2 OSeO3 visualized with Lorentz transmission electron microscopy for magnetic fields below the equilibrium skyrmion pocket is reported. This phase can be accessed by exciting the sample non-adiabatically with near-infrared femtosecond laser pulses and cannot be reached by any conventional field-cooling protocol, referred as a hidden phase. From the strong wavelength dependence of the photocreation process and via spin-dynamics simulations, the magnetoelastic effect is identified as the most likely photocreation mechanism. This effect results in a transient modification of the magnetic free energy landscape extending the equilibrium skyrmion pocket to lower magnetic fields. The evolution of the photoinduced phase is monitored for over 15 min and no decay is found. Because such a time is much longer than the duration of any transient effect induced by a laser pulse in a material, it is assumed that the newly discovered skyrmion state is stable for practical purposes, thus breaking ground for a novel approach to control magnetic state on demand at ultrafast timescales and drastically reducing heat dissipation relevant for next-generation spintronic devices
Beschreibung:Date Revised 17.08.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202304197