Single-Gate In-Transistor Readout of Current Superposition and Collapse Utilizing Quantum Tunneling and Ferroelectric Switching

© 2023 Wiley-VCH GmbH.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 32 vom: 05. Aug., Seite e2301206
Auteur principal: Chen, Ching-Hung (Auteur)
Autres auteurs: Lai, Yu-Ting, Chen, Ciao-Fen, Wu, Pei-Tzu, Su, Kuan-Jung, Hsu, Sheng-Yang, Dai, Guo-Jin, Huang, Zan-Yi, Hsu, Chien-Lung, Lee, Shen-Yang, Shen, Chuan-Hui, Chen, Hsin-Yu, Lee, Chia-Chin, Hsieh, Dong-Ru, Lin, Yen-Fu, Chao, Tien-Sheng, Lo, Shun-Tsung
Format: Article en ligne
Langue:English
Publié: 2023
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article Hf0.5Zr0.5O2 charge percolation ferroelectric switching nanostructured transistors polysilicon nanofilms polysilicon nanosheets quantum tunneling
LEADER 01000caa a22002652c 4500
001 NLM357842243
003 DE-627
005 20250304211032.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202301206  |2 doi 
028 5 2 |a pubmed25n1192.xml 
035 |a (DE-627)NLM357842243 
035 |a (NLM)37282350 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Ching-Hung  |e verfasserin  |4 aut 
245 1 0 |a Single-Gate In-Transistor Readout of Current Superposition and Collapse Utilizing Quantum Tunneling and Ferroelectric Switching 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 11.08.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2023 Wiley-VCH GmbH. 
520 |a In nanostructure assemblies, the superposition of current paths forms microscopic electric circuits, and different circuit networks produce varying results, particularly when utilized as transistor channels for computing applications. However, the intricate nature of assembly networks and the winding paths of commensurate currents hinder standard circuit modeling. Inspired by the quantum collapse of superposition states for information decoding in quantum circuits, the implementation of analogous current path collapse to facilitate the detection of microscopic circuits by modifying their network topology is explored. Here, the superposition and collapse of current paths in gate-all-around polysilicon nanosheet arrays are demonstrated to enrich the computational resources within transistors by engineering the channel length and quantity. Switching the ferroelectric polarization of Hf0.5 Zr0.5 O2 gate dielectric, which drives these transistors out-of-equilibrium, decodes the output polymorphism through circuit topological modifications. Furthermore, a protocol for the single-electron readout of ferroelectric polarization is presented with tailoring the channel coherence. The introduction of lateral path superposition results into intriguing metal-to-insulator transitions due to transient behavior of ferroelectric switching. This ability to adjust the current networks within transistors and their interaction with ferroelectric polarization in polycrystalline nanostructures lays the groundwork for generating diverse current characteristics as potential physical databases for optimization-based computing 
650 4 |a Journal Article 
650 4 |a Hf0.5Zr0.5O2 
650 4 |a charge percolation 
650 4 |a ferroelectric switching 
650 4 |a nanostructured transistors 
650 4 |a polysilicon nanofilms 
650 4 |a polysilicon nanosheets 
650 4 |a quantum tunneling 
700 1 |a Lai, Yu-Ting  |e verfasserin  |4 aut 
700 1 |a Chen, Ciao-Fen  |e verfasserin  |4 aut 
700 1 |a Wu, Pei-Tzu  |e verfasserin  |4 aut 
700 1 |a Su, Kuan-Jung  |e verfasserin  |4 aut 
700 1 |a Hsu, Sheng-Yang  |e verfasserin  |4 aut 
700 1 |a Dai, Guo-Jin  |e verfasserin  |4 aut 
700 1 |a Huang, Zan-Yi  |e verfasserin  |4 aut 
700 1 |a Hsu, Chien-Lung  |e verfasserin  |4 aut 
700 1 |a Lee, Shen-Yang  |e verfasserin  |4 aut 
700 1 |a Shen, Chuan-Hui  |e verfasserin  |4 aut 
700 1 |a Chen, Hsin-Yu  |e verfasserin  |4 aut 
700 1 |a Lee, Chia-Chin  |e verfasserin  |4 aut 
700 1 |a Hsieh, Dong-Ru  |e verfasserin  |4 aut 
700 1 |a Lin, Yen-Fu  |e verfasserin  |4 aut 
700 1 |a Chao, Tien-Sheng  |e verfasserin  |4 aut 
700 1 |a Lo, Shun-Tsung  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 35(2023), 32 vom: 05. Aug., Seite e2301206  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g volume:35  |g year:2023  |g number:32  |g day:05  |g month:08  |g pages:e2301206 
856 4 0 |u http://dx.doi.org/10.1002/adma.202301206  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2023  |e 32  |b 05  |c 08  |h e2301206