Defect Engineering of a High-Entropy Metallic Glass Surface for High-Performance Overall Water Splitting at Ampere-Level Current Densities

© 2023 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 38 vom: 01. Sept., Seite e2303439
1. Verfasser: Zhang, Xinyue (VerfasserIn)
Weitere Verfasser: Yang, Yiyuan, Liu, Yujing, Jia, Zhe, Wang, Qianqian, Sun, Ligang, Zhang, Lai-Chang, Kruzic, Jamie J, Lu, Jian, Shen, Baolong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article defect engineering high-entropy metallic glass lattice distortion stacking faults water electrolysis
LEADER 01000caa a22002652c 4500
001 NLM357817567
003 DE-627
005 20250304210745.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202303439  |2 doi 
028 5 2 |a pubmed25n1192.xml 
035 |a (DE-627)NLM357817567 
035 |a (NLM)37279880 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Xinyue  |e verfasserin  |4 aut 
245 1 0 |a Defect Engineering of a High-Entropy Metallic Glass Surface for High-Performance Overall Water Splitting at Ampere-Level Current Densities 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 21.09.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2023 Wiley-VCH GmbH. 
520 |a Platinum-based electrocatalysts possess high water electrolysis activity and are essential components for hydrogen evolution reaction (HER). A major challenge, however, is how to break the cost-efficiency trade-off. Here, a novel defect engineering strategy is presented to construct a nanoporous (FeCoNiB0.75 )97 Pt3 (atomic %) high-entropy metallic glass (HEMG) with a nanocrystalline surface structure that contains large amounts of lattice distortion and stacking faults to achieve excellent electrocatalytic performance using only 3 at% of Pt. The defect-rich HEMG achieves ultralow overpotentials at ampere-level current density of 1000 mA cm-2 for HER (104 mV) and oxygen evolution reaction (301 mV) under alkaline conditions, while retains a long-term durability exceeding 200 h at 100 mA cm-2 . Moreover, it only requires 81 and 122 mV to drive the current densities of 1000 and 100 mA cm-2 for HER under acidic and neutral conditions, respectively. Modelling results reveal that lattice distortion and stacking fault defects help to optimize atomic configuration and modulate electronic interaction, while the surface nanoporous architecture provides abundant active sites, thus synergistically contributing to the reduced energy barrier for water electrolysis. This defect engineering approach combined with a HEMG design strategy is expected to be widely applicable for development of high-performance alloy catalysts 
650 4 |a Journal Article 
650 4 |a defect engineering 
650 4 |a high-entropy metallic glass 
650 4 |a lattice distortion 
650 4 |a stacking faults 
650 4 |a water electrolysis 
700 1 |a Yang, Yiyuan  |e verfasserin  |4 aut 
700 1 |a Liu, Yujing  |e verfasserin  |4 aut 
700 1 |a Jia, Zhe  |e verfasserin  |4 aut 
700 1 |a Wang, Qianqian  |e verfasserin  |4 aut 
700 1 |a Sun, Ligang  |e verfasserin  |4 aut 
700 1 |a Zhang, Lai-Chang  |e verfasserin  |4 aut 
700 1 |a Kruzic, Jamie J  |e verfasserin  |4 aut 
700 1 |a Lu, Jian  |e verfasserin  |4 aut 
700 1 |a Shen, Baolong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 35(2023), 38 vom: 01. Sept., Seite e2303439  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g volume:35  |g year:2023  |g number:38  |g day:01  |g month:09  |g pages:e2303439 
856 4 0 |u http://dx.doi.org/10.1002/adma.202303439  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2023  |e 38  |b 01  |c 09  |h e2303439