Exogenous monoterpenes mitigate H2O2-induced lipid damage but do not attenuate photosynthetic decline during water deficit in tomato

© The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Experimental Biology.

Détails bibliographiques
Publié dans:Journal of experimental botany. - 1985. - 74(2023), 17 vom: 13. Sept., Seite 5327-5340
Auteur principal: Zhou, Hao (Auteur)
Autres auteurs: Ashworth, Kirsti, Dodd, Ian C
Format: Article en ligne
Langue:English
Publié: 2023
Accès à la collection:Journal of experimental botany
Sujets:Journal Article Research Support, Non-U.S. Gov't Solanum lycopersicum Ascorbic peroxidase malondialdehyde oxidative stress photosynthetic efficiency superoxide dismutase Antioxidants Reactive Oxygen Species plus... Hydrogen Peroxide BBX060AN9V Water 059QF0KO0R Soil Lipids
Description
Résumé:© The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Although monoterpenes are suggested to mediate oxidative status, their role in abiotic stress responses is currently unclear. Here, a foliar spray of monoterpenes increased antioxidant capacity and decreased oxidative stress of Solanum lycopersicum under water deficit stress. The foliar content of monoterpenes increased with spray concentration indicating foliar uptake of exogenous monoterpenes. Exogenous monoterpene application substantially decreased foliar accumulation of hydrogen peroxide (H2O2) and lipid peroxidation (malondialdehyde). However, it appears that monoterpenes prevent the accumulation of reactive oxygen species rather than mitigating subsequent reactive oxygen species-induced damage. Low spray concentration (1.25 mM) proved most effective in decreasing oxidative stress but did not up-regulate the activity of key antioxidant enzymes (superoxide dismutase and ascorbate peroxidase) even though higher (2.5 and 5 mM) spray concentrations did, suggesting a complex role for monoterpenes in mediating antioxidant processes. Furthermore, soil drying caused similar photosynthetic limitations in all plants irrespective of monoterpene treatments, apparently driven by strong reductions in stomatal conductance as photosystem II efficiency only decreased in very dry soil. We suggest that exogenous monoterpenes may mitigate drought-induced oxidative stress by direct quenching and/or up-regulating endogenous antioxidative processes. The protective properties of specific monoterpenes and endogenous antioxidants require further investigation
Description:Date Completed 14.09.2023
Date Revised 18.09.2023
published: Print
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/erad219