Image Patch-Matching With Graph-Based Learning in Street Scenes

Matching landmark patches from a real-time image captured by an on-vehicle camera with landmark patches in an image database plays an important role in various computer perception tasks for autonomous driving. Current methods focus on local matching for regions of interest and do not take into accou...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 05., Seite 3465-3480
1. Verfasser: She, Rui (VerfasserIn)
Weitere Verfasser: Kang, Qiyu, Wang, Sijie, Tay, Wee Peng, Guan, Yong Liang, Navarro, Diego Navarro, Hartmannsgruber, Andreas
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM357781163
003 DE-627
005 20231226073331.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3281171  |2 doi 
028 5 2 |a pubmed24n1192.xml 
035 |a (DE-627)NLM357781163 
035 |a (NLM)37276104 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a She, Rui  |e verfasserin  |4 aut 
245 1 0 |a Image Patch-Matching With Graph-Based Learning in Street Scenes 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 26.06.2023 
500 |a Date Revised 26.06.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Matching landmark patches from a real-time image captured by an on-vehicle camera with landmark patches in an image database plays an important role in various computer perception tasks for autonomous driving. Current methods focus on local matching for regions of interest and do not take into account spatial neighborhood relationships among the image patches, which typically correspond to objects in the environment. In this paper, we construct a spatial graph with the graph vertices corresponding to patches and edges capturing the spatial neighborhood information. We propose a joint feature and metric learning model with graph-based learning. We provide a theoretical basis for the graph-based loss by showing that the information distance between the distributions conditioned on matched and unmatched pairs is maximized under our framework. We evaluate our model using several street-scene datasets and demonstrate that our approach achieves state-of-the-art matching results 
650 4 |a Journal Article 
700 1 |a Kang, Qiyu  |e verfasserin  |4 aut 
700 1 |a Wang, Sijie  |e verfasserin  |4 aut 
700 1 |a Tay, Wee Peng  |e verfasserin  |4 aut 
700 1 |a Guan, Yong Liang  |e verfasserin  |4 aut 
700 1 |a Navarro, Diego Navarro  |e verfasserin  |4 aut 
700 1 |a Hartmannsgruber, Andreas  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 05., Seite 3465-3480  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:32  |g year:2023  |g day:05  |g pages:3465-3480 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3281171  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 05  |h 3465-3480